scholarly journals Adaptive and Mutational Responses to Peptide Dendrimer Antimicrobials in Pseudomonas aeruginosa

2020 ◽  
Vol 64 (4) ◽  
Author(s):  
Fatma Ben Jeddou ◽  
Léna Falconnet ◽  
Alexandre Luscher ◽  
Thissa Siriwardena ◽  
Jean-Louis Reymond ◽  
...  

ABSTRACT Colistin (polymyxin E) is a last-resort antibiotic against multidrug-resistant isolates of Pseudomonas aeruginosa. However, the nephro-toxicity of colistin limits its use, spurring the interest in novel antimicrobial peptides (AMP). Here, we show that the synthetic AMP-dendrimer G3KL (MW 4,531.38 Da, 15 positive charges, MIC = 8 mg/liter) showed faster killing than polymyxin B (Pmx-B) with no detectable resistance selection in P. aeruginosa strain PA14. Spontaneous mutants selected on Pmx-B, harboring loss of function mutations in the PhoQ sensor kinase gene, showed increased Pmx-B MICs and arnB operon expression (4-amino-l-arabinose addition to lipid A), but remained susceptible to dendrimers. Two mutants carrying a missense mutation in the periplasmic loop of the PmrB sensor kinase showed increased MICs for Pmx-B (8-fold) and G3KL (4-fold) but not for the dendrimer T7 (MW 4,885.64 Da, 16 positive charges, MIC = 8 mg/liter). The pmrB mutants showed increased expression of the arnB operon as well as of the speD2-speE2-PA4775 operon, located upstream of pmrAB, and involved in polyamine biosynthesis. Exogenous supplementation with the polyamines spermine and norspermine increased G3KL and T7 MICs in a phoQ mutant background but not in the PA14 wild type. This suggests that both addition of 4-amino-l-arabinose and secretion of polyamines are required to reduce susceptibility to dendrimers, probably neutralizing the negative charges present on the lipid A and the 2-keto-3-deoxyoctulosonic acid (KDO) sugars of the lipopolysaccharide (LPS), respectively. We further show by transcriptome analysis that the dendrimers G3KL and T7 induce adaptive responses through the CprRS two-component system in PA14.

mSystems ◽  
2019 ◽  
Vol 4 (1) ◽  
Author(s):  
Mei-Ling Han ◽  
Yan Zhu ◽  
Darren J. Creek ◽  
Yu-Wei Lin ◽  
Alina D. Gutu ◽  
...  

ABSTRACT Polymyxins are a last-line therapy against multidrug-resistant Pseudomonas aeruginosa; however, resistance to polymyxins has been increasingly reported. Therefore, understanding the mechanisms of polymyxin activity and resistance is crucial for preserving their clinical usefulness. This study employed comparative metabolomics and transcriptomics to investigate the responses of polymyxin-susceptible P. aeruginosa PAK (polymyxin B MIC, 1 mg/liter) and its polymyxin-resistant pmrB mutant PAKpmrB6 (MIC, 16 mg/liter) to polymyxin B (4, 8, and 128 mg/liter) at 1, 4, and 24 h, respectively. Our results revealed that polymyxin B at 4 mg/liter induced different metabolic and transcriptomic responses between polymyxin-susceptible and -resistant P. aeruginosa. In strain PAK, polymyxin B significantly activated PmrAB and the mediated arn operon, leading to increased 4-amino-4-deoxy-L-arabinose (L-Ara4N) synthesis and the addition to lipid A. In contrast, polymyxin B did not increase lipid A modification in strain PAKpmrB6. Moreover, the syntheses of lipopolysaccharide and peptidoglycan were significantly decreased in strain PAK but increased in strain PAKpmrB6 due to polymyxin B treatment. In addition, 4 mg/liter polymyxin B significantly perturbed phospholipid and fatty acid levels and induced oxidative stress in strain PAK, but not in PAKpmrB6. Notably, the increased trehalose-6-phosphate levels indicate that polymyxin B potentially caused osmotic imbalance in both strains. Furthermore, 8 and 128 mg/liter polymyxin B significantly elevated lipoamino acid levels and decreased phospholipid levels but without dramatic changes in lipid A modification in wild-type and mutant strains, respectively. Overall, this systems study is the first to elucidate the complex and dynamic interactions of multiple cellular pathways associated with the polymyxin mode of action against P. aeruginosa. IMPORTANCE Pseudomonas aeruginosa has been highlighted by the recent WHO Global Priority Pathogen List due to multidrug resistance. Without new antibiotics, polymyxins remain a last-line therapeutic option for this difficult-to-treat pathogen. The emergence of polymyxin resistance highlights the growing threat to our already very limited antibiotic armamentarium and the urgency to understand the exact mechanisms of polymyxin activity and resistance. Integration of the correlative metabolomics and transcriptomics results in the present study discovered that polymyxin treatment caused significant perturbations in the biosynthesis of lipids, lipopolysaccharide, and peptidoglycan, central carbon metabolism, and oxidative stress. Importantly, lipid A modifications were surprisingly rapid in response to polymyxin treatment at clinically relevant concentrations. This is the first study to reveal the dynamics of polymyxin-induced cellular responses at the systems level, which highlights that combination therapy should be considered to minimize resistance to the last-line polymyxins. The results also provide much-needed mechanistic information which potentially benefits the discovery of new-generation polymyxins.


2020 ◽  
Vol 64 (6) ◽  
Author(s):  
Anna Olsson ◽  
Pikkei Wistrand-Yuen ◽  
Elisabet I. Nielsen ◽  
Lena E. Friberg ◽  
Linus Sandegren ◽  
...  

ABSTRACT Antibiotic combination therapy is used for severe infections caused by multidrug-resistant (MDR) Gram-negative bacteria, yet data regarding which combinations are most effective are lacking. This study aimed to evaluate the in vitro efficacy of polymyxin B in combination with 13 other antibiotics against four clinical strains of MDR Pseudomonas aeruginosa. We evaluated the interactions of polymyxin B in combination with amikacin, aztreonam, cefepime, chloramphenicol, ciprofloxacin, fosfomycin, linezolid, meropenem, minocycline, rifampin, temocillin, thiamphenicol, or trimethoprim by automated time-lapse microscopy using predefined cutoff values indicating inhibition of growth (≤106 CFU/ml) at 24 h. Promising combinations were subsequently evaluated in static time-kill experiments. All strains were intermediate or resistant to polymyxin B, antipseudomonal β-lactams, ciprofloxacin, and amikacin. Genes encoding β-lactamases (e.g., blaPAO and blaOXA-50) and mutations associated with permeability and efflux were detected in all strains. In the time-lapse microscopy experiments, positive interactions were found with 39 of 52 antibiotic combination/bacterial strain setups. Enhanced activity was found against all four strains with polymyxin B used in combination with aztreonam, cefepime, fosfomycin, minocycline, thiamphenicol, and trimethoprim. Time-kill experiments showed additive or synergistic activity with 27 of the 39 tested polymyxin B combinations, most frequently with aztreonam, cefepime, and meropenem. Positive interactions were frequently found with the tested combinations, against strains that harbored several resistance mechanisms to the single drugs, and with antibiotics that are normally not active against P. aeruginosa. Further study is needed to explore the clinical utility of these combinations.


2019 ◽  
Vol 87 (4) ◽  
Author(s):  
Toby L. Bartholomew ◽  
Timothy J. Kidd ◽  
Joana Sá Pessoa ◽  
Raquel Conde Álvarez ◽  
José A. Bengoechea

ABSTRACTAcinetobacter baumanniicauses a wide range of nosocomial infections. This pathogen is considered a threat to human health due to the increasingly frequent isolation of multidrug-resistant strains. There is a major gap in knowledge on the infection biology ofA. baumannii, and only a few virulence factors have been characterized, including lipopolysaccharide. The lipid A expressed byA. baumanniiis hepta-acylated and contains 2-hydroxylaurate. The late acyltransferases controlling the acylation of lipid A have been already characterized. Here, we report the characterization ofA. baumanniiLpxO, which encodes the enzyme responsible for the 2-hydroxylation of lipid A. By genetic methods and mass spectrometry, we demonstrate that LpxO catalyzes the 2-hydroxylation of the laurate transferred byA. baumanniiLpxL. LpxO-dependent lipid A 2-hydroxylation protectsA. baumanniifrom polymyxin B, colistin, and human β-defensin 3. LpxO contributes to the survival ofA. baumanniiin human whole blood and is required for pathogen survival in the waxmothGalleria mellonella. LpxO also protectsAcinetobacterfromG. mellonellaantimicrobial peptides and limits their expression. Further demonstrating the importance of LpxO-dependent modification in immune evasion, 2-hydroxylation of lipid A limits the activation of the mitogen-activated protein kinase Jun N-terminal protein kinase to attenuate inflammatory responses. In addition, LpxO-controlled lipid A modification mediates the production of the anti-inflammatory cytokine interleukin-10 (IL-10) via the activation of the transcriptional factor CREB. IL-10 in turn limits the production of inflammatory cytokines followingA. baumanniiinfection. Altogether, our studies suggest that LpxO is a candidate for the development of anti-A. baumanniidrugs.


2018 ◽  
Vol 62 (6) ◽  
Author(s):  
Mei-Ling Han ◽  
Yan Zhu ◽  
Darren J. Creek ◽  
Yu-Wei Lin ◽  
Dovile Anderson ◽  
...  

ABSTRACTMultidrug-resistantPseudomonas aeruginosapresents a global medical challenge, and polymyxins are a key last-resort therapeutic option. Unfortunately, polymyxin resistance inP. aeruginosahas been increasingly reported. The present study was designed to define metabolic differences between paired polymyxin-susceptible and -resistantP. aeruginosastrains using untargeted metabolomics and lipidomics analyses. The metabolomes of wild-typeP. aeruginosastrain K ([PAK] polymyxin B MIC, 1 mg/liter) and its pairedpmrBmutant strains, PAKpmrB6and PAKpmrB12(polymyxin B MICs of 16 mg/liter and 64 mg/liter, respectively) were characterized using liquid chromatography-mass spectrometry, and metabolic differences were identified through multivariate and univariate statistics. PAKpmrB6and PAKpmrB12, which displayed lipid A modifications with 4-amino-4-deoxy-l-arabinose, showed significant perturbations in amino acid and carbohydrate metabolism, particularly the intermediate metabolites from 4-amino-4-deoxy-l-arabinose synthesis and the methionine salvage cycle pathways. The genomics result showed a premature termination (Y275stop) inspeE(encoding spermidine synthase) in PAKpmrB6, and metabolomics data revealed a decreased intracellular level of spermidine in PAKpmrB6compared to that in PAKpmrB12. Our results indicate that spermidine may play an important role in high-level polymyxin resistance inP. aeruginosa. Interestingly, bothpmrBmutants had decreased levels of phospholipids, fatty acids, and acyl-coenzyme A compared to those in the wild-type PAK. Moreover, the more resistant PAKpmrB12mutant exhibited much lower levels of phospholipids than the PAKpmrB6mutant, suggesting that the decreased phospholipid level was associated with polymyxin resistance. In summary, this study provides novel mechanistic information on polymyxin resistance inP. aeruginosaand highlights its impacts on bacterial metabolism.


2017 ◽  
Vol 61 (4) ◽  
Author(s):  
James J. Howard ◽  
Carolyn R. Sturge ◽  
Dina A. Moustafa ◽  
Seth M. Daly ◽  
Kimberly R. Marshall-Batty ◽  
...  

ABSTRACT Pseudomonas aeruginosa is a highly virulent, multidrug-resistant pathogen that causes significant morbidity and mortality in hospitalized patients and is particularly devastating in patients with cystic fibrosis. Increasing antibiotic resistance coupled with decreasing numbers of antibiotics in the developmental pipeline demands novel antibacterial approaches. Here, we tested peptide-conjugated phosphorodiamidate morpholino oligomers (PPMOs), which inhibit translation of complementary mRNA from specific, essential genes in P. aeruginosa. PPMOs targeted to acpP, lpxC, and rpsJ, inhibited P. aeruginosa growth in many clinical strains and activity of PPMOs could be enhanced 2- to 8-fold by the addition of polymyxin B nonapeptide at subinhibitory concentrations. The PPMO targeting acpP was also effective at preventing P. aeruginosa PAO1 biofilm formation and at reducing existing biofilms. Importantly, treatment with various combinations of a PPMO and a traditional antibiotic demonstrated synergistic growth inhibition, the most effective of which was the PPMO targeting rpsJ with tobramycin. Furthermore, treatment of P. aeruginosa PA103-infected mice with PPMOs targeting acpP, lpxC, or rpsJ significantly reduced the bacterial burden in the lungs at 24 h by almost 3 logs. Altogether, this study demonstrates that PPMOs targeting the essential genes acpP, lpxC, or rpsJ in P. aeruginosa are highly effective at inhibiting growth in vitro and in vivo. These data suggest that PPMOs alone or in combination with antibiotics represent a novel approach to addressing the problems associated with rapidly increasing antibiotic resistance in P. aeruginosa.


2019 ◽  
Vol 63 (11) ◽  
Author(s):  
Kevin M. Krause ◽  
Cat M. Haglund ◽  
Christy Hebner ◽  
Alisa W. Serio ◽  
Grace Lee ◽  
...  

ABSTRACT New drugs with novel mechanisms of resistance are desperately needed to address both community and nosocomial infections due to Gram-negative bacteria. One such potential target is LpxC, an essential enzyme that catalyzes the first committed step of lipid A biosynthesis. Achaogen conducted an extensive research campaign to discover novel LpxC inhibitors with activity against Pseudomonas aeruginosa. We report here the in vitro antibacterial activity and pharmacodynamics of ACHN-975, the only molecule from these efforts and the first ever LpxC inhibitor to be evaluated in phase 1 clinical trials. In addition, we describe the profiles of three additional LpxC inhibitors that were identified as potential lead molecules. These efforts did not produce an additional development candidate with a sufficiently large therapeutic window and the program was subsequently terminated.


2014 ◽  
Vol 59 (1) ◽  
pp. 536-543 ◽  
Author(s):  
Meredith S. Wright ◽  
Yo Suzuki ◽  
Marcus B. Jones ◽  
Steven H. Marshall ◽  
Susan D. Rudin ◽  
...  

ABSTRACTThe emergence of multidrug-resistant (MDR)Klebsiella pneumoniaehas resulted in a more frequent reliance on treatment using colistin. However, resistance to colistin (Colr) is increasingly reported from clinical settings. The genetic mechanisms that lead to ColrinK. pneumoniaeare not fully characterized. Using a combination of genome sequencing and transcriptional profiling by RNA sequencing (RNA-Seq) analysis, distinct genetic mechanisms were found among nine Colrclinical isolates. Colrwas related to mutations in three different genes inK. pneumoniaestrains, with distinct impacts on gene expression. Upregulation of thepmrHoperon encoding 4-amino-4-deoxy-l-arabinose (Ara4N) modification of lipid A was found in all Colrstrains. Alteration of themgrBgene was observed in six strains. One strain had a mutation inphoQ. Common among these seven strains was elevated expression ofphoPQand unaltered expression ofpmrCAB, which is involved in phosphoethanolamine addition to lipopolysaccharide (LPS). In two strains, separate mutations were found in a previously uncharacterized histidine kinase gene that is part of a two-component regulatory system (TCRS) now designatedcrrAB. In these strains, expression ofpmrCAB,crrAB, and an adjacent glycosyltransferase gene, but not that ofphoPQ, was elevated. Complementation with the wild-type allele restored colistin susceptibility in both strains. ThecrrABgenes are present in mostK. pneumoniaegenomes, but not inEscherichia coli. Additional upregulated genes in all strains include those involved in cation transport and maintenance of membrane integrity. Because thecrrABgenes are present in only some strains, Colrmechanisms may be dependent on the genetic background.


2012 ◽  
Vol 57 (1) ◽  
pp. 110-119 ◽  
Author(s):  
Lucía Fernández ◽  
Carolina Álvarez-Ortega ◽  
Irith Wiegand ◽  
Jorge Olivares ◽  
Dana Kocíncová ◽  
...  

ABSTRACTMultidrug resistance inPseudomonas aeruginosais increasingly becoming a threat for human health. Indeed, some strains are resistant to almost all currently available antibiotics, leaving very limited choices for antimicrobial therapy. In many such cases, polymyxins are the only available option, although as their utilization increases so does the isolation of resistant strains. In this study, we screened a comprehensive PA14 mutant library to identify genes involved in changes of susceptibility to polymyxin B inP. aeruginosa. Surprisingly, our screening revealed that the polymyxin B resistome of this microorganism is fairly small. Thus, only one resistant mutant and 17 different susceptibility/intrinsic resistance determinants were identified. Among the susceptible mutants, a significant number carried transposon insertions in lipopolysaccharide (LPS)-related genes. LPS analysis revealed that four of these mutants (galU,lptC,wapR, andssg) had an altered banding profile in SDS-polyacrylamide gels and Western blots, with three of them exhibiting LPS core truncation and lack of O-antigen decoration. Further characterization of these four mutants showed that their increased susceptibility to polymyxin B was partly due to increased basal outer membrane permeability. Additionally, these mutants also lacked the aminoarabinose-substituted lipid A species observed in the wild type upon growth in low magnesium. Overall, our results emphasize the importance of LPS integrity and lipid A modification in resistance to polymyxins inP. aeruginosa, highlighting the relevance of characterizing the genes that affect biosynthesis of cell surface structures in this pathogen to follow the evolution of peptide resistance in the clinic.


2011 ◽  
Vol 55 (12) ◽  
pp. 5761-5769 ◽  
Author(s):  
Amanda K. Miller ◽  
Mark K. Brannon ◽  
Laurel Stevens ◽  
Helle Krogh Johansen ◽  
Sara E. Selgrade ◽  
...  

ABSTRACTPseudomonas aeruginosacan develop resistance to polymyxin and other cationic antimicrobial peptides. Previous work has shown that mutations in the PmrAB and PhoPQ regulatory systems can confer low to moderate levels of polymyxin resistance (MICs of 8 to 64 mg/liter) in laboratory and clinical strains of this organism. To explore the role of PhoPQ in high-level clinical polymyxin resistance,P. aeruginosastrains with colistin MICs > 512 mg/liter that had been isolated from cystic fibrosis patients treated with inhaled colistin (polymyxin E) were analyzed. Probable loss-of-functionphoQalleles found in these cystic fibrosis strains conferred resistance to polymyxin. Partial and complete suppressor mutations inphoPwere identified in some cystic fibrosis strains with resistance-conferringphoQmutations, suggesting that additional loci can be involved in polymyxin resistance inP. aeruginosa. Disruption of chromosomalphoQin the presence of an intactphoPallele stimulated 4-amino-l-arabinose addition to lipid A and induced transcription from the promoter of thepmrH(arnB) operon, consistent with the known role of this lipid A modification in polymyxin resistance. These results indicate thatphoQloss-of-function mutations can contribute to high-level polymyxin resistance in clinical strains ofP. aeruginosa.


2015 ◽  
Vol 59 (9) ◽  
pp. 5288-5296 ◽  
Author(s):  
Marina Berditsch ◽  
Thomas Jäger ◽  
Nikola Strempel ◽  
Thomas Schwartz ◽  
Jörg Overhage ◽  
...  

ABSTRACTMultidrug-resistantPseudomonas aeruginosais a major cause of severe hospital-acquired infections. Currently, polymyxin B (PMB) is a last-resort antibiotic for the treatment of infections caused by Gram-negative bacteria, despite its undesirable side effects. The delivery of drug combinations has been shown to reduce the required therapeutic doses of antibacterial agents and thereby their toxicity if a synergistic effect is present. In this study, we investigated the synergy between two cyclic antimicrobial peptides, PMB and gramicidin S (GS), against differentP. aeruginosaisolates, using a quantitative checkerboard assay with resazurin as a growth indicator. Among the 28 strains that we studied, 20 strains showed a distinct synergistic effect, represented by a fractional inhibitory concentration index (FICI) of ≤0.5. Remarkably, several clinicalP. aeruginosaisolates that grew as small-colony variants revealed a nonsynergistic effect, as indicated by FICIs between >0.5 and ≤0.70. In addition to inhibiting the growth of planktonic bacteria, the peptide combinations significantly decreased static biofilm growth compared with treatment with the individual peptides. There was also a faster and more prolonged effect when the combination of PMB and GS was used compared with single-peptide treatments on the metabolic activity of pregrown biofilms. The results of the present study define a synergistic interaction between two cyclic membrane-active peptides toward 17 multidrug-resistantP. aeruginosaand biofilms ofP. aeruginosastrain PAO1. Thus, the application of PMB and GS in combination is a promising option for a topical medication and in the prevention of acute and chronic infections caused by multidrug-resistant or biofilm-formingP. aeruginosa.


Sign in / Sign up

Export Citation Format

Share Document