scholarly journals In Vitro Evaluation of Antileishmanial Activity of Computationally Screened Compounds against Ascorbate Peroxidase To Combat Amphotericin B Drug Resistance

2017 ◽  
Vol 61 (7) ◽  
Author(s):  
Rani Mansuri ◽  
Ashish Kumar ◽  
Sindhuprava Rana ◽  
Bhavana Panthi ◽  
M. Yousuf Ansari ◽  
...  

ABSTRACT In visceral leishmaniasis (VL), the host macrophages generate oxidative stress to destroy the pathogen, while Leishmania combats the harmful effect of radicals by redox homeostasis through its unique trypanothione cascade. Leishmania donovani ascorbate peroxidase (LdAPx) is a redox enzyme that regulates the trypanothione cascade and detoxifies the effect of H2O2. The absence of an LdAPx homologue in humans makes it an excellent drug target. In this study, the homology model of LdAPx was built, including heme, and diverse compounds were prefiltered (PAINS, ADMET, and Lipinski's rule of five) and thereafter screened against the LdAPx model. Compounds having good affinity in terms of the Glide XP (extra precision) score were clustered to select diverse compounds for experimental validation. A total of 26 cluster representatives were procured and tested on promastigote culture, yielding 12 compounds with good antileishmanial activity. Out of them, six compounds were safer on the BALB/c peritoneal macrophages and were also effective against disease-causing intracellular amastigotes. Three out of six compounds inhibited recombinant LdAPx in a noncompetitive manner and also demonstrated partial reversion of the resistance property in an amphotericin B (AmB)-resistant strain, which may be due to an increased level of reactive oxygen species (ROS) and decrease of glutathione (GSH) content. However, inhibition of LdAPx in resistant parasites enhanced annexin V staining and activation of metacaspase-like protease activity, which may help in DNA fragmentation and apoptosis-like cell death. Thus, the present study will help in the search for specific hits and templates of potential therapeutic interest and therefore may facilitate the development of new drugs for combination therapy against VL.

2014 ◽  
Vol 58 (4) ◽  
pp. 2156-2166 ◽  
Author(s):  
Muhammad Suleman ◽  
Jean-Pierre Gangneux ◽  
Laurent Legentil ◽  
Sorya Belaz ◽  
Yari Cabezas ◽  
...  

ABSTRACTWe investigated thein vitroeffects of four alkyl-galactofuranoside derivatives, i.e., octyl-β-d-galactofuranoside (compound 1), 6-amino-β-d-galactofuranoside (compound 2), 6-N-acetamido-β-d-galactofuranoside (compound 3), and 6-azido-β-d-galactofuranoside (compound 4), onLeishmania donovani. Their mechanism of action was explored using electron paramagnetic resonance spectroscopy (EPR) and nuclear magnetic resonance (NMR), and ultrastructural alterations were analyzed by transmission electron microscopy (TEM). Compound 1 showed the most promising effects by inhibiting promastigote growth at a 50% inhibitory concentration (IC50) of 8.96 ± 2.5 μM. All compounds exhibit low toxicity toward human macrophages. Compound 1 had a higher selectivity index than the molecule used for comparison, i.e., miltefosine (159.7 versus 37.9, respectively). EPR showed that compound 1 significantly reduced membrane fluidity compared to control promastigotes and to compound 3. The furanose ring was shown to support this effect, since the isomer galactopyranose had no effect on parasite membrane fluidity or growth. NMR showed a direct interaction of all compounds (greatest with compound 1, followed by compounds 2, 3, and 4, in descending order) with the promastigote membrane and with octyl-galactopyranose and octanol, providing evidence that then-octyl chain was primarily involved in anchoring with the parasite membrane, followed by the putative crucial role of the furanose ring in the antileishmanial activity. A morphological analysis of compound 1-treated promastigotes by TEM revealed profound alterations in the parasite membrane and organelles, but this was not the case with compound 3. Quantification of annexin V binding by flow cytometry confirmed that compound 1 induced apoptosis in >90% of promastigotes. The effect of compound 1 was also assessed on intramacrophagic amastigotes and showed a reduction in amastigote growth associated with an increase of reactive oxygen species (ROS) production, thus validating its promising effect.


2015 ◽  
Vol 59 (5) ◽  
pp. 2479-2487 ◽  
Author(s):  
Keerti Jain ◽  
Ashwni Kumar Verma ◽  
Prabhat Ranjan Mishra ◽  
Narendra Kumar Jain

ABSTRACTThe present study aimed to develop an optimized dendrimeric delivery system for amphotericin B (AmB). Fifth-generation (5.0G) poly(propylene imine) (PPI) dendrimers were synthesized, conjugated with mannose, and characterized by use of various analytical techniques, including Fourier transform infrared spectroscopy (FTIR),1H nuclear magnetic resonance (1H-NMR) spectroscopic analysis, and atomic force microscopy (AFM). Mannose-conjugated 5.0G PPI (MPPI) dendrimers were loaded with AmB and evaluated for drug loading efficiency,in vitrodrug release profile, stability, hemolytic toxicity to human erythrocytes, cytotoxicity to and cell uptake by J774A.1 macrophage cells, antiparasitic activity against intracellularLeishmania donovaniamastigotes,in vivopharmacokinetic and biodistribution profiles, drug localization index, toxicity, and antileishmanial activity. AFM showed the nanometric size of the MPPI dendrimers, with a nearly globular architecture. The conjugate showed a good entrapment efficiency for AmB, along with pH-sensitive drug release. Highly significant reductions in toxicity toward human erythrocytes and macrophage cells, without compromising the antiparasitic activity of AmB, were observed. The dendrimeric formulation of AmB showed a significant enhancement of the parasiticidal activity of AmB toward intramacrophagicL. donovaniamastigotes. In thein vitrocell uptake studies, the formulation showed selectivity toward macrophages, with significant intracellular uptake. Further pharmacokinetic and organ distribution studies elucidated the controlled delivery behavior of the formulation. The drug localization index was found to increase significantly in macrophage-rich organs.In vivostudies showed a biocompatible behavior of MPPIA, with negligible toxicity even at higher doses, and promising antileishmanial activity. From the results, we concluded that surface-engineered dendrimers may serve as optimized delivery vehicles for AmB with enhanced activity and low or negligible toxicity.


2013 ◽  
Vol 57 (4) ◽  
pp. 1714-1722 ◽  
Author(s):  
Shalini Asthana ◽  
Anil K. Jaiswal ◽  
Pramod K. Gupta ◽  
Vivek K. Pawar ◽  
Anuradha Dube ◽  
...  

ABSTRACTThe accessible treatment options for life-threatening neglected visceral leishmaniasis (VL) disease have problems with efficacy, stability, adverse effects, and cost, making treatment a complex issue. Here we formulated nanometric amphotericin B (AmB)-encapsulated chitosan nanocapsules (CNC-AmB) using a polymer deposition technique mediated by nanoemulsion template fabrication. CNC-AmB exhibited good steric stabilityin vitro, where the chitosan content was found to be efficient at preventing destabilization in the presence of protein and Ca2+. A toxicity study on the model cell line J774A and erythrocytes revealed that CNC-AmB was less toxic than commercialized AmB formulations such as Fungizone and AmBisome. The results ofin vitro(macrophage-amastigote system; 50% inhibitory concentration [IC50], 0.19 ± 0.04 μg AmB/ml) andin vivo(Leishmania donovani-infected hamsters; 86.1% ± 2.08% parasite inhibition) experiments in conjunction with effective internalization by macrophages illustrated the efficacy of CNC-AmB at augmenting antileishmanial properties. Quantitative mRNA analysis by real-time PCR (RT-PCR) showed that the improved effect was synergized with the upregulation of tumor necrosis factor alpha (TNF-α), interleukin-12 (IL-12), and inducible nitric oxide synthase and with the downregulation of transforming growth factor β (TGF-β), IL-10, and IL-4. These research findings suggest that a cost-effective CNC-AmB immunoadjuvant chemotherapeutic delivery system could be a viable alternative to the current high-cost commercial lipid-based formulations.


2014 ◽  
Vol 58 (10) ◽  
pp. 6172-6184 ◽  
Author(s):  
Ashish Kumar ◽  
Sushmita Das ◽  
Bidyut Purkait ◽  
Abul Hasan Sardar ◽  
Ayan Kumar Ghosh ◽  
...  

ABSTRACTAmphotericin B (AmB), a polyene macrolide, is now a first-line treatment of visceral leishmaniasis cases refractory to antimonials in India. AmB relapse cases and the emergence of secondary resistance have now been reported. To understand the mechanism of AmB, differentially expressed genes in AmB resistance strains were identified by a DNA microarray and real-time reverse transcriptase PCR (RT-PCR) approach. Of the many genes functionally overexpressed in the presence of AmB, the ascorbate peroxidase gene from a resistantLeishmania donovanistrain (LdAPx gene) was selected because the gene is present only inLeishmania, not in humans. Apoptosis-like cell death after exposure to AmB was investigated in a wild-type (WT) strain in which the LdAPx gene was overexpressed and in AmB-sensitive and -resistant strains. A higher percentage of apoptosis-like cell death after AmB treatment was noticed in the sensitive strain than in both the resistant isolate and the strain sensitive to LdAPx overexpression. This event is preceded by AmB-induced formation of reactive oxygen species and elevation of the cytosolic calcium level. Enhanced cytosolic calcium was found to be responsible for depolarization of the mitochondrial membrane potential and the release of cytochromec(Cytc) into the cytosol. The redox behavior of Cytcshowed that it has a role in the regulation of apoptosis-like cell death by activating metacaspase- and caspase-like proteins and causing concomitant nuclear alterations, as determined by terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling (TUNEL) and DNA fragmentation in the resistant strain. The present study suggests that constitutive overexpression of LdAPx in theL. donovaniAmB-resistant strain prevents cells from the deleterious effect of oxidative stress, i.e., mitochondrial dysfunction and cellular death induced by AmB.


2013 ◽  
Vol 57 (10) ◽  
pp. 4608-4614 ◽  
Author(s):  
Abeer H. A. Mohamed-Ahmed ◽  
Karin Seifert ◽  
Vanessa Yardley ◽  
Hollie Burrell-Saward ◽  
Stephen Brocchini ◽  
...  

ABSTRACTA noncovalent, water-soluble complex of amphotericin B (AMB) and poly(α-glutamic acid) (PGA), with AMB loadings ranging from 25 to 55% (wt/wt) using PGA with a molecular weight range of 50,000 to 70,000, was prepared as a potential new treatment for visceral leishmaniasis (VL). The AMB-PGA complex was shown to be as active as Fungizone (AMB deoxycholate) against intracellularLeishmania donovaniamastigotes in differentiated THP-1 cells. Thein vitrouptake of the AMB-PGA complex by differentiated THP-1 cells was similar to that of Fungizone and higher than that of AmBisome (liposomal AMB). The AMB-PGA complex also displayed a dose-response profile similar to that of AmBisomein vivoin BALB/c mice againstL. donovani, with 50% effective doses (ED50s) of 0.24 ± 0.03 mg/kg of body weight for the AMB-PGA complex and 0.24 ± 0.06 mg/kg for AmBisome. A biodistribution study with mice indicated that the AMB-PGA complex cleared more rapidly from plasma than AmBisome, with a comparable low level of distribution to the kidneys.


2019 ◽  
Vol 75 (4) ◽  
pp. 942-950 ◽  
Author(s):  
Ruby Bansal ◽  
Shib Sankar Sen ◽  
Rohini Muthuswami ◽  
Rentala Madhubala

Abstract Background Leishmania donovani, a protozoan parasite, is the primary causative agent for visceral leishmaniasis. Toxicity and increased resistance to existing drugs have led to an urgent need for identifying new drugs and drug targets. Understanding the risks and mechanisms of resistance is of great importance. Amphotericin B (AmB) is a polyene antimicrobial, the mainstay therapy for visceral leishmaniasis in several parts of India. Objectives In the present study, we established a line of AmB-resistant L. donovani promastigotes in vitro and demonstrated the molecular basis of resistance to AmB. Methods AmB-resistant promastigotes were generated and characterized to evaluate the mechanism of resistance to AmB. We examined the sterol composition of the promastigotes and the axenic amastigotes derived from the WT and AmB-resistant promastigotes. The role of the plant-like C-22 desaturase responsible for stigmasterol production was also evaluated in the AmB-resistant strain. Results The IC50 for resistant cells was four times higher than for the WT. AmB-resistant promastigotes showed an increase in the conversion of β-sitosterol into stigmasterol. The presence of higher amounts of stigmasterol in resistant promastigotes, as well as in axenic amastigotes, signifies its role in AmB resistance in Leishmania. The resistant strain showed reduced infectivity in vitro. Conclusions We have elucidated the mode of action and resistance mechanisms to the drug. However, further work is required to validate the potential role of stigmasterol in resistance and to help develop a diagnostic kit that can assist in diagnosing potentially resistant lines in the field.


2016 ◽  
Vol 60 (8) ◽  
pp. 4799-4808 ◽  
Author(s):  
Adepemi O. Ogundeji ◽  
Carolina H. Pohl ◽  
Olihile M. Sebolai

ABSTRACTThe usage of fluconazole and amphotericin B in clinical settings is often limited by, among other things, drug resistance development and undesired side effects. Thus, there is a constant need to find new drugs to better manage fungal infections. Toward this end, the study described in this paper considered the repurposing of aspirin (acetylsalicylic acid) and ibuprofen as alternative drugs to control the growth of cryptococcal cells.In vitrosusceptibility tests, including a checkerboard assay, were performed to assess the response ofCryptococcus neoformansandCryptococcus gattiito the above-mentioned anti-inflammatory drugs. Next, the capacity of these two drugs to induce stress as well as their mode of action in the killing of cryptococcal cells was determined. The studied fungal strains revealed a response to both aspirin and ibuprofen that was dose dependent, with ibuprofen exerting greater antimicrobial action. More importantly, the MICs of these drugs did not negatively (i) affect growth or (ii) impair the functioning of macrophages; rather, they enhanced the ability of these immune cells to phagocytose cryptococcal cells. Ibuprofen was also shown to act in synergy with fluconazole and amphotericin B. The treatment of cryptococcal cells with aspirin or ibuprofen led to stress induction via activation of the high-osmolarity glycerol (HOG) pathway, and cell death was eventually achieved through reactive oxygen species (ROS)-mediated membrane damage. The presented data highlight the potential clinical application of aspirin and ibuprofen as candidate anti-Cryptococcusdrugs.


2012 ◽  
Vol 56 (11) ◽  
pp. 6044-6047 ◽  
Author(s):  
Peiying Feng ◽  
M. Javad Najafzadeh ◽  
Jiufeng Sun ◽  
Sarah Ahmed ◽  
Liyan Xi ◽  
...  

ABSTRACTCyphellophora guyanensis(n= 15), otherCyphellophoraspecies (n= 11),Phialophora europaea(n= 43), and otherPhialophoraspecies (n= 12) were testedin vitroagainst nine antifungal drugs. The MIC90s across all of the strains (n= 81) were, in increasing order, as follows: posaconazole, 0.063 μg/ml; itraconazole, 0.5 μg/ml; voriconazole, 1 μg/ml; micafungin, 1 μg/ml; terbinafine, 2 μg/ml; isavuconazole, 4 μg/ml; caspofungin, 4 μg/ml; fluconazole, 8 μg/ml; amphotericin B, 16 μg/ml.


2012 ◽  
Vol 56 (9) ◽  
pp. 4786-4792 ◽  
Author(s):  
Michelle M. Butler ◽  
Dean L. Shinabarger ◽  
Diane M. Citron ◽  
Ciarán P. Kelly ◽  
Sofya Dvoskin ◽  
...  

ABSTRACTClostridium difficileinfection (CDI) causes moderate to severe disease, resulting in diarrhea and pseudomembranous colitis. CDI is difficult to treat due to production of inflammation-inducing toxins, resistance development, and high probability of recurrence. Only two antibiotics are approved for the treatment of CDI, and the pipeline for therapeutic agents contains few new drugs. MBX-500 is a hybrid antibacterial, composed of an anilinouracil DNA polymerase inhibitor linked to a fluoroquinolone DNA gyrase/topoisomerase inhibitor, with potential as a new therapeutic for CDI treatment. Since MBX-500 inhibits three bacterial targets, it has been previously shown to be minimally susceptible to resistance development. In the present study, thein vitroandin vivoefficacies of MBX-500 were explored against the Gram-positive anaerobe,C. difficile. MBX-500 displayed potency across nearly 50 isolates, including those of the fluoroquinolone-resistant, toxin-overproducing NAP1/027 ribotype, performing as well as comparator antibiotics vancomycin and metronidazole. Furthermore, MBX-500 was a narrow-spectrum agent, displaying poor activity against many other gut anaerobes. MBX-500 was active in acute and recurrent infections in a toxigenic hamster model of CDI, exhibiting full protection against acute infections and prevention of recurrence in 70% of the animals. Hamsters treated with MBX-500 displayed significantly greater weight gain than did those treated with vancomycin. Finally, MBX-500 was efficacious in a murine model of CDI, again demonstrating a fully protective effect and permitting near-normal weight gain in the treated animals. These selective anti-CDI features support the further development of MBX 500 for the treatment of CDI.


2018 ◽  
Vol 63 (2) ◽  
pp. e00904-18 ◽  
Author(s):  
Celia Fernández-Rubio ◽  
Esther Larrea ◽  
José Peña Guerrero ◽  
Eduardo Sesma Herrero ◽  
Iñigo Gamboa ◽  
...  

ABSTRACTConventional chemotherapy against leishmaniasis includes agents exhibiting considerable toxicity. In addition, reports of drug resistance are not uncommon. Thus, safe and effective therapies are urgently needed. Isoselenocyanate compounds have recently been identified with potential antitumor activity. It is well known that some antitumor agents demonstrate effects againstLeishmania. In this study, thein vitroleishmanicidal activities of several organo-selenium and organo-sulfur compounds were tested againstLeishmania majorandLeishmania amazonensisparasites, using promastigotes and intracellular amastigote forms. The cytotoxicity of these agents was measured in murine peritoneal macrophages and their selectivity indexes were calculated. One of the tested compounds, the isoselenocyanate derivative NISC-6, showed selectivity indexes 2- and 10-fold higher than those of the reference drug amphotericin B when evaluated inL. amazonensisandL. major, respectively. The American strain (L. amazonensis) was less sensitive to NISC-6 thanL. major, showing a trend similar to that observed previously for amphotericin B. In addition, we also observed that NISC-6 significantly reduced the number of amastigotes per infected macrophage. On the other hand, we showed that NISC-6 decreases expression levels ofLeishmaniagenes involved in the cell cycle, such astopoisomerase-2(TOP-2),PCNA, andMCM4, therefore contributing to its leishmanicidal activity. The effect of this compound on cell cycle progression was confirmed by flow cytometry. We observed a significant increase of cells in the G1phase and a dramatic reduction of cells in the S phase compared to untreated cells. Altogether, our data suggest that the isoselenocyanate NISC-6 may be a promising candidate for new drug development against leishmaniasis.


Sign in / Sign up

Export Citation Format

Share Document