scholarly journals Impact of Bicarbonate on PBP2a Production, Maturation, and Functionality in Methicillin-Resistant Staphylococcus aureus (MRSA)

Author(s):  
Selvi C. Ersoy ◽  
Henry F. Chambers ◽  
Richard A. Proctor ◽  
Adriana E. Rosato ◽  
Nagendra N. Mishra ◽  
...  

Certain methicillin-resistant Staphylococcus aureus (MRSA) strains exhibit β-lactam-susceptibility in vitro, ex vivo and in vivo in the presence of NaHCO3 (NaHCO3-responsive MRSA). Herein, we investigate the impact of NaHCO3 on factors required for PBP2a functionality. Prototype NaHCO3-responsive and -nonresponsive MRSA strains (as defined in vitro) were assessed for the impact of NaHCO3 on: expression of genes involved in PBP2a production-maturation pathways (mecA, blaZ, pbp4, vraSR, prsA, sigB, and floA); membrane PBP2a and PrsA protein content; and membrane carotenoid content. Following NaHCO3 exposure in NaHCO3-responsive (vs - nonresponsive) MRSA, there was significantly reduced expression of: i) mecA and blaZ; ii) the vraSR-prsA gene axis; and iii) pbp4. Carotenoid production was reduced, while floA expression was increased by NaHCO3 exposure in all MRSA strains. This work underscores the distinct regulatory impact of NaHCO3 on a cadre of genes encoding factors required for maintenance of the MRSA phenotype through PBP2a functionality and maturation.

2012 ◽  
Vol 56 (12) ◽  
pp. 6291-6297 ◽  
Author(s):  
Azzam Saleh-Mghir ◽  
Oana Dumitrescu ◽  
Aurélien Dinh ◽  
Yassine Boutrad ◽  
Laurent Massias ◽  
...  

ABSTRACTCommunity-associated methicillin-resistantStaphylococcus aureus(CA-MRSA) can cause osteomyelitis with severe sepsis and/or local complications in which a Panton-Valentine leukocidin (PVL) role is suspected.In vitrosub-MIC antibiotic effects on growth and PVL production by 11 PVL+MRSA strains, including the major CA-MRSA clones (USA300, including the LAC strain; USA400; and USA1000), and 11 PVL+methicillin-susceptibleS. aureus(MSSA) strains were tested in microplate culture. Time-kill analyses with ceftobiprole at its MIC were also run with LAC. Efficacies of ceftobiprole (40 mg/kg of body weight subcutaneously [s.c.] four times a day [q.i.d.]) or vancomycin (60 mg/kg intramuscularly [i.m.] twice a day [b.i.d.]) alone or combined with rifampin (10 mg/kg b.i.d.) against rabbit CA-MRSA osteomyelitis, induced by tibial injection of 3.4 × 107CFU of LAC, were compared. Treatment, started 14 days postinoculation, lasted 14 days.In vitro, 6/11 strains cultured with sub-MICs of ceftobiprole produced 1.6- to 4.8-fold more PVL than did the controls, with no link to specific clones. Rifampin decreased PVL production by all tested strains. In time-kill analyses at the LAC MIC (0.75 mg/liter), PVL production rose transiently at 6 and 8 h and then declined 2-fold at 16 h, concomitant with a 2-log10-CFU-count decrease.In vivo, the mean log10CFU/g of bone for ceftobiprole (1.44 ± 0.40) was significantly lower than that for vancomycin (2.37 ± 1.22) (P= 0.034), with 7/10 versus 5/11 bones sterilized, respectively. Combination with rifampin enhanced ceftobiprole (1.16 ± 0.04 CFU/g of bone [P= 0.056], 11/11 sterile bones) and vancomycin (1.23 ± 0.06 CFU/g [P= 0.011], 11/11 sterile bones) efficacies. Ceftobiprole bactericidal activity and the rifampin anti-PVL effect could play a role in these findings, which should be of interest for treating CA-MRSA osteomyelitis.


2010 ◽  
Vol 54 (12) ◽  
pp. 5115-5119 ◽  
Author(s):  
Jared L. Crandon ◽  
Joseph L. Kuti ◽  
David P. Nicolau

ABSTRACT Telavancin displays potent in vitro and in vivo activity against methicillin-resistant Staphylococcus aureus (MRSA), including strains with reduced susceptibility to vancomycin. We compared the efficacies of telavancin and vancomycin against MRSA strains with vancomycin MICs of ≥1 μg/ml in a neutropenic murine lung infection model. Thirteen clinical MRSA isolates (7 vancomycin-susceptible, 2 vancomycin-heteroresistant [hVISA], and 4 vancomycin-intermediate [VISA] isolates) were tested after 24 h, and 7 isolates (1 hVISA and 4 VISA isolates) were tested after 48 h of exposure. Mice were administered subcutaneous doses of telavancin at 40 mg/kg of body weight every 12 h (q12h) or of vancomycin at 110 mg/kg q12h; doses were designed to simulate the area under the concentration-time curve for the free, unbound fraction of drug (fAUC) observed for humans given telavancin at 10 mg/kg q24h or vancomycin at 1 g q12h. Efficacy was expressed as the 24- or 48-h change in lung bacterial density from pretreatment counts. At dose initiation, the mean bacterial load was 6.16 ± 0.26 log10 CFU/ml, which increased by averages of 1.26 ± 0.55 and 1.74 ± 0.68 log in untreated mice after 24 and 48 h, respectively. At both time points, similar CFU reductions were noted for telavancin and vancomycin against MRSA, with vancomycin MICs of ≤2 μg/ml. Both drugs were similarly efficacious after 24 and 48 h of treatment against the hVISA strains tested. Against VISA isolates, telavancin reduced bacterial burdens significantly more than vancomycin for 1 of 4 isolates after 24 h and for 3 of 4 isolates after 48 h. These data support the potential utility of telavancin for the treatment of MRSA pneumonia caused by pathogens with reduced susceptibility to vancomycin.


Genes ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1650
Author(s):  
Selvi C. Ersoy ◽  
Blake M. Hanson ◽  
Richard A. Proctor ◽  
Cesar A. Arias ◽  
Truc T. Tran ◽  
...  

Methicillin-resistant Staphylococcus aureus (MRSA) infections represent a difficult clinical treatment issue. Recently, a novel phenotype was discovered amongst selected MRSA which exhibited enhanced β-lactam susceptibility in vitro in the presence of NaHCO3 (termed ‘NaHCO3-responsiveness’). This increased β-lactam susceptibility phenotype has been verified in both ex vivo and in vivo models. Mechanistic studies to-date have implicated NaHCO3-mediated repression of genes involved in the production, as well as maturation, of the alternative penicillin-binding protein (PBP) 2a, a necessary component of MRSA β-lactam resistance. Herein, we utilized RNA-sequencing (RNA-seq) to identify genes that were differentially expressed in NaHCO3-responsive (MRSA 11/11) vs. non-responsive (COL) strains, in the presence vs. absence of NaHCO3-β-lactam co-exposures. These investigations revealed that NaHCO3 selectively repressed the expression of a cadre of genes in strain 11/11 known to be a part of the sigB-sarA-agr regulon, as well as a number of genes involved in the anchoring of cell wall proteins in MRSA. Moreover, several genes related to autolysis, cell division, and cell wall biosynthesis/remodeling, were also selectively impacted by NaHCO3-OXA exposure in the NaHCO3-responsive strain MRSA 11/11. These outcomes provide an important framework for further studies to mechanistically verify the functional relevance of these genetic perturbations to the NaHCO3-responsiveness phenotype in MRSA.


2012 ◽  
Vol 56 (12) ◽  
pp. 6192-6200 ◽  
Author(s):  
Shrenik Mehta ◽  
Christopher Singh ◽  
Konrad B. Plata ◽  
Palas K. Chanda ◽  
Arundhati Paul ◽  
...  

ABSTRACTMethicillin-resistantStaphylococcus aureus(MRSA) has emerged to be one of the most important pathogens both in health care and in community-onset infections. Daptomycin (DAP) is a cyclic anionic lipopeptide recommended for treatment of skin infections, bacteremia, and right-sided endocarditis caused by MRSA. Resistance to DAP (DAPr) has been reported in MRSA and is mostly accompanied by a parallel decrease in oxacillin resistance, a process known as the “seesaw effect.” Our study provides evidence that the seesaw effect applies to other β-lactams and carbapenems of clinical use, including nafcillin (NAF), cefotaxime (CTX), amoxicillin-clavulanic (AMC), and imipenem (IMP), in heterogeneous DAPrMRSA strains but not in MRSA strains expressing homogeneous β-lactam resistance. The antibacterial efficacy of DAP in combination with β-lactams was evaluated in isogenic DAP-susceptible (DAPs)/DaprMRSA strains originally obtained from patients that failed DAP monotherapy. Bothin vitro(MIC, synergy-kill curve) andin vivo(wax worm model) approaches were used. In these models, DAP and a β-lactam proved to be highly synergistic against both heterogeneous and homogeneous clinical DAPrMRSA strains. Mechanistically, β-lactams induced a reduction in the cell net positive surface charge, reverting the increased repulsion provoked by DAP alone, an effect that may favor the binding of DAP to the cell surface. The ease ofin vitromutant selection was observed when DAPsMRSA strains were exposed to DAP. Importantly, the combination of DAP and a β-lactam prevented the selection of DAPrvariants. In summary, our data show that the DAP–β-lactam combination may significantly enhance both thein vitroandin vivoefficacy of anti-MRSA therapeutic options against DAPrMRSA infections and represent an option in preventing DAPrselection in persistent or refractory MRSA infections.


1997 ◽  
Vol 41 (10) ◽  
pp. 2278-2281 ◽  
Author(s):  
R Nagano ◽  
K Shibata ◽  
T Naito ◽  
A Fuse ◽  
K Asano ◽  
...  

The in vivo activity of BO-3482, which has a dithiocarbamate chain at the C-2 position of 1beta-methyl-carbapenem, was compared with those of vancomycin and imipenem in murine models of septicemia and thigh infection with methicillin-resistant Staphylococcus aureus (MRSA). Because BO-3482 was more susceptible than imipenem to renal dehydropeptidase I in a kinetic study of hydrolysis by this renal enzyme, the therapeutic efficacy of BO-3482 was determined during coadministration with cilastatin. In the septicemia models, which involved two homogeneous MRSA strains and one heterogeneous MRSA strain, the 50% effective doses were, respectively, 4.80, 6.06, and 0.46 mg/kg of body weight for BO-3482; 5.56, 2.15, and 1.79 mg/kg for vancomycin; and >200, >200, and 15.9 mg/kg for imipenem. BO-3482 was also as effective as vancomycin in an MRSA septicemia model with mice with cyclophosphamide-induced immunosuppression. In the thigh infection model with a homogeneous MRSA strain, the bacterial counts in tissues treated with BO-3482-cilastatin were significantly reduced in a dose-dependent manner compared with the counts in those treated with vancomycin and imipenem-cilastatin (P < 0.001). These results indicate that BO-3482-cilastatin is as effective as vancomycin in murine systemic infections and is more bactericidal than vancomycin in local-tissue infections. The potent in vivo activity of BO-3482-cilastatin against such MRSA infections can be ascribed to the good in vitro anti-MRSA activity and improved pharmacokinetics in mice when BO-3482 is combined with cilastatin and to the bactericidal nature of the carbapenem.


2012 ◽  
Vol 56 (11) ◽  
pp. 5528-5533 ◽  
Author(s):  
Yan Q. Xiong ◽  
Wessam Abdel Hady ◽  
Arnold S. Bayer ◽  
Liang Chen ◽  
Barry N. Kreiswirth ◽  
...  

ABSTRACTA number of cases of both methicillin-susceptibleStaphylococcus aureus(MSSA) and methicillin-resistantS. aureus(MRSA) strains that have developed daptomycin resistance (DAP-R) have been reported. Telavancin (TLV) is a lipoglycopeptide agent with a dual mechanism of activity (cell wall synthesis inhibition plus depolarization of the bacterial cell membrane). Five recent daptomycin-susceptible (DAP-S)/DAP-R MRSA isogenic strain pairs were evaluated forin vitroTLV susceptibility. All five DAP-R strains (DAP MICs ranging from 2 to 4 μg/ml) were susceptible to TLV (MICs of ≤0.38 μg/ml).In vitrotime-kill analyses also revealed that several TLV concentrations (1-, 2-, and 4-fold MICs) caused rapid killing against the DAP-R strains. Moreover, for 3 of 5 DAP-R strains (REF2145, A215, and B2.0), supra-MICs of TLV were effective at preventing regrowth at 24 h of incubation. Further, the combination of TLV plus oxacillin (at 0.25× or 0.50× MIC for each agent) increased killing of DAP-R MRSA strains REF2145 and A215 at 24 h (∼2-log and 5-log reductions versus TLV and oxacillin alone, respectively). Finally, using a rabbit model of aortic valve endocarditis caused by DAP-R strain REF2145, TLV therapy produced a mean reduction of >4.5 log10CFU/g in vegetations, kidneys, and spleen compared to untreated or DAP-treated rabbits. Moreover, TLV-treated rabbits had a significantly higher percentage of sterile tissue cultures (87% in vegetations and 100% in kidney and spleen) than all other treatment groups (P< 0.0001). Together, these results demonstrate that TLV has potent bactericidal activityin vitroandin vivoagainst DAP-R MRSA isolates.


2005 ◽  
Vol 49 (1) ◽  
pp. 45-51 ◽  
Author(s):  
Cédric Jacqueline ◽  
Dominique Navas ◽  
Eric Batard ◽  
Anne-Françoise Miegeville ◽  
Virginie Le Mabecque ◽  
...  

ABSTRACT Indifference or moderate antagonism of linezolid combined with other antibiotics in vitro and in vivo have mainly been reported in the literature. We have assessed the in vitro activities of linezolid, alone or in combination with imipenem, against methicillin-resistant Staphylococcus aureus (MRSA) strains using the dynamic checkerboard and time-kill curve methods. Linezolid and low concentrations of imipenem had a synergistic effect, leading us to evaluate the in vivo antibacterial activity of the combination using the rabbit endocarditis experimental model. Two MRSA strains were used for in vivo experiments: one was a heterogeneous glycopeptide-intermediate clinical S. aureus strain isolated from blood cultures, and the other was the S. aureus COL reference strain. Animals infected with one of two MRSA strains were randomly assigned to one of the following treatments: no treatment (controls), linezolid (simulating a dose in humans of 10 mg/kg of body weight every 12 h), a constant intravenous infusion of imipenem (which allowed the steady-state concentration of about 1/32 the MIC of imipenem for each strain to be reached in serum), or the combination of both treatments. Linezolid and imipenem as monotherapies exhibited no bactericidal activity against either strain. The combination of linezolid plus imipenem showed in vivo bactericidal activity that corresponded to a decrease of at least 4.5 log CFU/g of vegetation compared to the counts for the controls. In conclusion, the combination exhibited synergistic and bactericidal activities against two MRSA strains after 5 days of treatment. The combination of linezolid plus imipenem appears to be promising for the treatment of severe MRSA infections and merits further investigations to explore the mechanism underlying the synergy between the two drugs.


2020 ◽  
Vol 64 (4) ◽  
Author(s):  
Sungim Choi ◽  
Song Mi Moon ◽  
Su-Jin Park ◽  
Seung Cheol Lee ◽  
Kyung Hwa Jung ◽  
...  

ABSTRACT As concerns arise that the vancomycin MIC of methicillin-resistant Staphylococcus aureus (MRSA) could be increased by concurrent colistin administration, we evaluated the effect of colistin on vancomycin efficacy against MRSA via in vitro and in vivo studies. Among MRSA blood isolates collected in a tertiary-care hospital, we selected representative strains from community-associated MRSA strains (CA-MRSA; ST72-MRSA-SCCmec IV) and hospital-acquired MRSA strains (HA-MRSA; ST5-MRSA-SCCmec II). USA CA-MRSA (USA300), HA-MRSA (USA100), N315 (New York/Japan clone), and a MRSA standard strain (ATCC 43300) were used for comparison. We performed checkerboard assays to identify changes in the vancomycin MIC of MRSA following colistin exposure and evaluated the effect of a vancomycin-colistin combination using time-kill assays. We also assessed the in vivo antagonistic effect by administering vancomycin, colistin, and a combination of these two in a neutropenic murine thigh infection model. In the checkerboard assays, vancomycin MICs of all MRSA strains except N315 were increased by from 0.25 to 0.75 μg/ml following colistin exposure. However, the time-kill assays indicated antagonism only against ST5-MRSA and USA100, when the vancomycin concentration was twice the MIC. In the murine thigh infection model with ST5-MRSA and USA100, vancomycin monotherapy reduced the number of CFU/muscle >1 log10 compared to a combination treatment after 24 h in ST5-MRSA, indicating an antagonistic effect of colistin on vancomycin treatment. This study suggests that exposure to colistin may reduce the susceptibility to vancomycin of certain MRSA strains. Combination therapy with vancomycin and colistin for multidrug-resistant pathogens might result in treatment failure for concurrent MRSA infection.


2010 ◽  
Vol 54 (8) ◽  
pp. 3161-3169 ◽  
Author(s):  
Soo-Jin Yang ◽  
Yan Q. Xiong ◽  
Susan Boyle-Vavra ◽  
Robert Daum ◽  
Tiffanny Jones ◽  
...  

ABSTRACT In vivo development of daptomycin resistance (DAPr) among Staphylococcus aureus strains, especially methicillin-resistant S. aureus (MRSA) strains, in conjunction with clinical treatment failures, has emerged as a major problem. This has raised the question of DAP-based combination regimens to enhance efficacy against such strains. We studied five recent DAP-susceptible (DAPs)/DAPr clinical MRSA strain pairs obtained from patients who failed DAP monotherapy regimens, as well as one DAPs/DAPr MRSA strain pair in which the resistant strain was generated by in vitro passage in DAP. Of note, we identified a DAP-oxacillin (OX) “seesaw” phenomenon in vitro in which development of DAPr was accompanied by a concomitant fall in OX resistance, as demonstrated by 3- to 4-fold decreases in the OX MIC, a susceptibility shift by population analyses, and enhanced early killing by OX in time-kill assays. In addition, the combination of DAP and OX exerted modest improvement in in vitro bactericidal effects. Using an experimental model of infective endocarditis and two DAPs/DAPr strain pairs, we demonstrated that (i) OX monotherapy was ineffective at clearing DAPr strains from any target tissue in this model (heart valve, kidneys, or spleen) and (ii) DAP-OX combination therapy was highly effective in DAPr strain clearances from these organs. The mechanism(s) of the seesaw effect remains to be defined but does not appear to involve excision of the staphylococcal cassette chromosome mec (SCCmec) that carries mecA.


2015 ◽  
Vol 59 (12) ◽  
pp. 7396-7404 ◽  
Author(s):  
Xiaoliang Ba ◽  
Ewan M. Harrison ◽  
Andrew L. Lovering ◽  
Nicholas Gleadall ◽  
Ruth Zadoks ◽  
...  

ABSTRACTβ-Lactam resistance in methicillin-resistantStaphylococcus aureus(MRSA) is mediated by the expression of an alternative penicillin-binding protein 2a (PBP2a) (encoded bymecA) with a low affinity for β-lactam antibiotics. Recently, a novel variant ofmecA, known asmecC, was identified in MRSA isolates from both humans and animals. In this study, we demonstrate thatmecC-encoded PBP2c does not mediate resistance to penicillin. Rather, broad-spectrum β-lactam resistance in MRSA strains carryingmecC(mecC-MRSA strains) is mediated by a combination of both PBP2c and the distinct β-lactamase encoded by theblaZgene of strain LGA251 (blaZLGA251), which is part ofmecC-encoding staphylococcal cassette chromosomemec(SCCmec) type XI. We further demonstrate thatmecC-MRSA strains are susceptible to the combination of penicillin and the β-lactam inhibitor clavulanic acidin vitroand that the same combination is effectivein vivofor the treatment of experimentalmecC-MRSA infection in wax moth larvae. Thus, we demonstrate how the distinct biological differences betweenmecA- andmecC-encoded PBP2a and PBP2c have the potential to be exploited as a novel approach for the treatment ofmecC-MRSA infections.


Sign in / Sign up

Export Citation Format

Share Document