scholarly journals High-Level Resistance of Staphylococcus aureus to β-Lactam Antibiotics Mediated by Penicillin-Binding Protein 4 (PBP4)

2017 ◽  
Vol 61 (6) ◽  
Author(s):  
Stephanie M. Hamilton ◽  
J. Andrew N. Alexander ◽  
Eun Ju Choo ◽  
Li Basuino ◽  
Thaina M. da Costa ◽  
...  

ABSTRACT Penicillin-binding protein 4 (PBP4), a nonessential, low-molecular-weight penicillin-binding protein of Staphylococcus aureus, has been implicated in low-level resistance to β-lactam antibiotics, although the mechanism is unknown. Mutations in PBP4 and its promoter were identified in a laboratory-generated mutant strain, CRB, which expresses high-level resistance to β-lactams, including resistance to the new-generation cephalosporins active against methicillin-resistant strains of S. aureus. These mutations did not appreciably alter the β-lactam antibiotic binding affinity of purified recombinant mutant PBP4 compared to that of wild-type PBP4. Compared to the susceptible parent strain, COLnex, the CRB strain produces a highly cross-linked cell wall peptidoglycan, indicative of increased transpeptidase activity. The pbp4 promoter mutation of CRB was associated with greatly increased amounts of PBP4 in membranes compared to those in the COLnex parent. Replacement of the native promoter of COLnex with the mutant promoter of CRB resulted in increased amounts of PBP4 in membranes and a highly cross-linked cell wall. PBP4 can be repurposed to provide essential transpeptidase activity in vivo and confer high-level resistance to β-lactam antibiotics, such as ceftobiprole and ceftaroline.

2017 ◽  
Vol 61 (11) ◽  
Author(s):  
Som S. Chatterjee ◽  
Liang Chen ◽  
Aubre Gilbert ◽  
Thaina M. da Costa ◽  
Vinod Nair ◽  
...  

ABSTRACT Penicillin binding protein 4 (PBP4) can provide high-level β-lactam resistance in Staphylococcus aureus. A series of missense and promoter mutations associated with pbp4 were detected in strains that displayed high-level resistance. We show here that the missense mutations facilitate the β-lactam resistance mediated by PBP4 and the promoter mutations lead to overexpression of pbp4. Our results also suggest a cooperative interplay among PBPs for β-lactam resistance.


2016 ◽  
Vol 60 (7) ◽  
pp. 3934-3941 ◽  
Author(s):  
Liana C. Chan ◽  
Aubre Gilbert ◽  
Li Basuino ◽  
Thaina M. da Costa ◽  
Stephanie M. Hamilton ◽  
...  

ABSTRACTStaphylococcus aureusis an important cause of both hospital- and community-associated methicillin-resistantS. aureus(MRSA) infections worldwide. β-Lactam antibiotics are the drugs of choice to treatS. aureusinfections, but resistance to these and other antibiotics make treatment problematic. High-level β-lactam resistance ofS. aureushas always been attributed to the horizontally acquired penicillin binding protein 2a (PBP 2a) encoded by themecAgene. Here, we show thatS. aureuscan also express high-level resistance to β-lactams, including new-generation broad-spectrum cephalosporins that are active against methicillin-resistant strains, through an uncanonical core genome-encoded penicillin binding protein, PBP 4, a nonessential enzyme previously considered not to be important for staphylococcal β-lactam resistance. Our results show that PBP 4 can mediate high-level resistance to β-lactams.


2004 ◽  
Vol 48 (12) ◽  
pp. 4566-4573 ◽  
Author(s):  
Anatoly Severin ◽  
Shang Wei Wu ◽  
Keiko Tabei ◽  
Alexander Tomasz

ABSTRACT A combination of biochemical and genetic experiments were performed in order to better understand the mechanism of expression of high-level vancomycin resistance in Staphylococcus aureus. The transcription of pbp2 of the highly vancomycin- and oxacillin-resistant strain COLVA200 and its mutant derivative with inactivated mecA were put under the control of an inducible promoter, and the dependence of oxacillin and vancomycin resistance and cell wall composition on the concentration of the isopropyl-β-d-thiogalactopyranoside inducer was determined. The results indicate that mecA—the genetic determinant of oxacillin resistance—while essential for oxacillin resistance, is not involved with the expression of vancomycin resistance. Penicillin binding protein 2A, the protein product of mecA, appears to be unable to utilize the depsipeptide cell wall precursor produced in the vancomycin-resistant cells for transpeptidation. The key penicillin binding protein essential for vancomycin resistance and for the synthesis of the abnormally structured cell walls characteristic of vancomycin-resistant S. aureus (A. Severin, K. Tabei, F. Tenover, M. Chung, N. Clarke, and A. Tomasz, J. Biol. Chem. 279:3398-3407, 2004) is penicillin binding protein 2.


2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Maria Celeste Varela ◽  
Melanie Roch ◽  
Agustina Taglialegna ◽  
Scott W. Long ◽  
Matthew Ojeda Saavedra ◽  
...  

Abstract Chronic airways infection with methicillin-resistant Staphylococcus aureus (MRSA) is associated with worse respiratory disease cystic fibrosis (CF) patients. Ceftaroline is a cephalosporin that inhibits the penicillin-binding protein (PBP2a) uniquely produced by MRSA. We analyzed 335 S. aureus isolates from CF sputum samples collected at three US centers between 2015–2018. Molecular relationships demonstrated that high-level resistance of preceding isolates to carbapenems were associated with subsequent isolation of ceftaroline resistant CF MRSA. In vitro evolution experiments showed that pre-exposure of CF MRSA to meropenem with further selection with ceftaroline implied mutations in mecA and additional mutations in pbp1 and pbp2, targets of carbapenems; no effects were achieved by other β-lactams. An in vivo pneumonia mouse model showed the potential therapeutic efficacy of ceftaroline/meropenem combination against ceftaroline-resistant CF MRSA infections. Thus, the present findings highlight risk factors and potential therapeutic strategies offering an opportunity to both prevent and address antibiotic resistance in this patient population.


2011 ◽  
Vol 55 (6) ◽  
pp. 2783-2787 ◽  
Author(s):  
Sudheer Bobba ◽  
V. K. Chaithanya Ponnaluri ◽  
Mridul Mukherji ◽  
William G. Gutheil

ABSTRACTPenicillin-binding protein 2a (PBP2a), the molecular determinant for high-level β-lactam resistance in methicillin-resistantStaphylococcus aureus(MRSA), is intrinsically resistant to most β-lactam antibiotics. The development and characterization of new inhibitors targeting PBP2a would benefit from an effective and convenient assay for inhibitor binding. This study was directed toward the development of a fluorescently detected β-lactam binding assay for PBP2a from MRSA. Biotinylated ampicillin and biotinylated cephalexin were tested as tagging reagents for fluorescence detection by using a streptavidin-horseradish peroxidase conjugate. Both bound surprisingly well to PBP2a, with binding constants of 1.6 ± 0.4 μM and 13.6 ± 0.8 μM, respectively. Two forms of the assay were developed, a one-step direct competition form of the assay and a two-step indirect competition form of the assay, and both forms of the assay gave comparable results. This assay was then used to characterize PBP2a binding to ceftobiprole, which gave results consistent with previous studies of ceftobiprole-PBP2a binding. This assay was also demonstrated for screening for PBP2a inhibitors by screening a set of 13 randomly selected β-lactams for PBP2a inhibition at 750 μM. Meropenem was observed to give substantial inhibition in this screen, and a follow-up titration experiment determined its apparentKito be 480 ± 70 μM. The availability of convenient and sensitive microtiter-plate based assays for the screening and characterization of PBP2a inhibitors is expected to facilitate the discovery and development of new PBP2a inhibitors for use in combating the serious public health problem posed by MRSA.


2004 ◽  
Vol 186 (6) ◽  
pp. 1705-1713 ◽  
Author(s):  
S. Gardete ◽  
A. M. Ludovice ◽  
R. G. Sobral ◽  
S. R. Filipe ◽  
H. de Lencastre ◽  
...  

ABSTRACT It was shown earlier that Tn551 inserted into the C-terminal region of murE of parental methicillin-resistant Staphylococcus aureus strain COL causes a drastic reduction in methicillin resistance, accompanied by accumulation of UDP-MurNAc dipeptide in the cell wall precursor pool and incorporation of these abnormal muropeptides into the peptidoglycan of the mutant. Methicillin resistance was recovered in a suppressor mutant. The murE gene of the same strain was then put under the control of the isopropyl-β-d-thiogalactopyranoside (IPTG)-inducible promoter P spac . Bacteria grown in the presence of suboptimal concentrations of IPTG accumulated UDP-MurNAc dipeptide in the cell wall precursor pool. Both growth rates and methicillin resistance levels (but not resistance to other antibiotics) were a function of the IPTG concentration. Northern analysis showed a gradual increase in the transcription of murE and also in the transcription of pbpB and mecA, parallel with the increasing concentrations of IPTG in the medium. A similar increase in the transcription of pbpB and mecA, the structural genes of penicillin-binding protein 2 (PBP2) and PBP2A, was also detected in the suppressor mutant. The expression of these two proteins, which are known to play critical roles in the mechanism of staphylococcal methicillin resistance, appears to be—directly or indirectly—under the control of the murE gene. Our data suggest that the drastic reduction of the methicillin MIC seen in the murE mutant may be caused by the insufficient cellular amounts of these two PBPs.


2013 ◽  
Vol 57 (10) ◽  
pp. 5005-5012 ◽  
Author(s):  
Andrew D. Berti ◽  
George Sakoulas ◽  
Victor Nizet ◽  
Ryan Tewhey ◽  
Warren E. Rose

ABSTRACTThe activity of daptomycin (DAP) against methicillin-resistantStaphylococcus aureus(MRSA) is enhanced in the presence of subinhibitory concentrations of antistaphylococcal β-lactam antibiotics by an undefined mechanism. Given the variability in the penicillin-binding protein (PBP)-binding profiles of different β-lactam antibiotics, the purpose of this study was to examine the relative enhancement of DAP activity against MRSA by different β-lactam antibiotics to determine if a specific PBP-binding profile is associated with the ability to enhance the anti-MRSA activity of DAP. We determined that both broad- and narrow-spectrum β-lactam antibiotics known to exhibit PBP1 binding demonstrated potent enhancement of DAP anti-MRSA activity, whereas β-lactam antibiotics with minimal PBP1 binding (cefoxitin, ceftriaxone, cefaclor, and cefotaxime) were less effective. We suspect that PBP1 disruption by β-lactam antibiotics affects pathways of cell division inS. aureusthat may be a compensatory response to DAP membrane insertion, resulting in DAP hypersusceptibility.


2015 ◽  
Vol 59 (7) ◽  
pp. 4040-4045 ◽  
Author(s):  
Margaret Ip ◽  
Irene Ang ◽  
Veranja Liyanapathirana ◽  
Helen Ma ◽  
Raymond Lai

ABSTRACTWe describe the dissemination of a multidrug-resistant (MDR) serogroup 19 pneumococcal clone of representative multilocus sequence type 271 (ST271) with high-level resistance to cefotaxime in Hong Kong and penicillin binding protein (pbp) genes and its relationships to Taiwan19F-14 and the prevalent multidrug-resistant 19A clone (MDR19A-ST320). A total of 472 nonduplicate isolates from 2006 and 2011 were analyzed. Significant increases in the rates of nonsusceptibility to penicillin (PEN) (MIC ≥ 4.0 μg/ml; 9.9 versus 23.3%;P= 0.0005), cefotaxime (CTX) (MIC ≥ 2.0 μg/ml; 12.2 versus 30.3%;P< 0.0001 [meningitis MIC ≥ 1.0 μg/ml; 30.2 versus 48.7%;P= 0.0001]), and erythromycin (ERY) (69.2 versus 84.0%;P= 0.0003) were noted when rates from 2006 and 2011 were compared. The CTX-resistant isolates with MICs of 8 μg/ml in 2011 were of serotype 19F, belonging to ST271. Analyses of the penicillin binding protein 2x (PBP2x) amino acid sequences in relation to the corresponding sequences of the R6 strain revealed M339F, E378A, M400T, and Y595F substitutions found within the ST271 clone but not present in Taiwan19F-14 or MDR19A. In addition, PBP2bs of ST271 strains and that of the Taiwan19F-14 clone were characterized by a unique amino acid substitution, E369D, while ST320 possessed the unique amino acid substitution K366N, as does that of MDR19A in the United States. We hypothesize that ST271 originated from the Taiwan19F-14 lineage, which had disseminated in Hong Kong in the early 2000s, and conferred higher-level β-lactam and cefotaxime resistance through acquisitions of 19 additional amino acid substitutions in PBP2b (amino acid [aa] positions 538 to 641) and altered PBP2x via recombination events. The serogroup 19 MDR CC320/271 clone warrants close monitoring to evaluate its effect after the switch to expanded conjugate vaccines.


2012 ◽  
Vol 56 (9) ◽  
pp. 4771-4778 ◽  
Author(s):  
Bartolomé Moyá ◽  
Alejandro Beceiro ◽  
Gabriel Cabot ◽  
Carlos Juan ◽  
Laura Zamorano ◽  
...  

ABSTRACTWe investigated the mechanisms leading toPseudomonas aeruginosapan-β-lactam resistance (PBLR) development during the treatment of nosocomial infections, with a particular focus on the modification of penicillin-binding protein (PBP) profiles and imipenem, ceftazidime, and ceftolozane (former CXA-101) PBP binding affinities. For this purpose, six clonally related pairs of sequential susceptible-PBLR isolates were studied. The presence ofoprD,ampD, anddacBmutations was explored by PCR followed by sequencing and the expression ofampCand efflux pump genes by real-time reverse transcription-PCR. The fluorescent penicillin Bocillin FL was used to determine PBP profiles in membrane preparations from all pairs, and 50% inhibitory concentrations (IC50s) of ceftolozane, ceftazidime, and imipenem were analyzed in 3 of them. Although a certain increase was noted (0 to 5 2-fold dilutions), the MICs of ceftolozane were ≤4 μg/ml in all PBLR isolates. All 6 PBLR isolates lacked OprD and overexpressedampCand one or several efflux pumps, particularlymexBand/ormexY. Additionally, 5 of them showed modified PBP profiles, including a modified pattern (n= 1) or diminished expression (n= 1) of PBP1a and a lack of PBP4 expression (n= 4), which correlated with AmpC overexpression driven bydacBmutation. Analysis of the essential PBP IC50s revealed significant variation of PBP1a/b binding affinities, both within each susceptible-PBLR pair and across the different pairs. Moreover, despite the absence of significant differences in gene expression or sequence, a clear tendency toward increased PBP2 (imipenem) and PBP3 (ceftazidime, ceftolozane, imipenem) IC50s was noted in PBLR isolates. Thus, our results suggest that in addition to AmpC, efflux pumps, and OprD, the modification of PBP patterns appears to play a role in thein vivoemergence of PBLR strains, which still conserve certain susceptibility to the new antipseudomonal cephalosporin ceftolozane.


Sign in / Sign up

Export Citation Format

Share Document