scholarly journals Evaluation of Pyrosequencing for Detecting Extensively Drug-Resistant Mycobacterium tuberculosis among Clinical Isolates from Four High-Burden Countries

2014 ◽  
Vol 59 (1) ◽  
pp. 414-420 ◽  
Author(s):  
Kanchan Ajbani ◽  
Shou-Yean Grace Lin ◽  
Camilla Rodrigues ◽  
Duylinh Nguyen ◽  
Francine Arroyo ◽  
...  

ABSTRACTReliable molecular diagnostics, which detect specific mutations associated with drug resistance, are promising technologies for the rapid identification and monitoring of drug resistance inMycobacterium tuberculosisisolates. Pyrosequencing (PSQ) has the ability to detect mutations associated with first- and second-line anti-tuberculosis (TB) drugs, with the additional advantage of being rapidly adaptable for the identification of new mutations. The aim of this project was to evaluate the performance of PSQ in predicting phenotypic drug resistance in multidrug- and extensively drug-resistant tuberculosis (M/XDR-TB) clinical isolates from India, South Africa, Moldova, and the Philippines. A total of 187 archived isolates were run through a PSQ assay in order to identifyM. tuberculosis(via the IS6110marker), and to detect mutations associated with M/XDR-TB within small stretches of nucleotides in selected loci. The molecular targets includedkatG, theinhApromoter and theahpC-oxyRintergenic region for isoniazid (INH) resistance; therpoBcore region for rifampin (RIF) resistance;gyrAfor fluoroquinolone (FQ) resistance; andrrsfor amikacin (AMK), capreomycin (CAP), and kanamycin (KAN) resistance. PSQ data were compared to phenotypic mycobacterial growth indicator tube (MGIT) 960 drug susceptibility testing results for performance analysis. The PSQ assay illustrated good sensitivity for the detection of resistance to INH (94%), RIF (96%), FQ (93%), AMK (84%), CAP (88%), and KAN (68%). The specificities of the assay were 96% for INH, 100% for RIF, FQ, AMK, and KAN, and 97% for CAP. PSQ is a highly efficient diagnostic tool that reveals specific nucleotide changes associated with resistance to the first- and second-line anti-TB drug medications. This methodology has the potential to be linked to mutation-specific clinical interpretation algorithms for rapid treatment decisions.

2017 ◽  
Vol 61 (12) ◽  
Author(s):  
Lynne de Welzen ◽  
Vegard Eldholm ◽  
Kashmeel Maharaj ◽  
Abigail L. Manson ◽  
Ashlee M. Earl ◽  
...  

ABSTRACT Genetics-based drug susceptibility testing has improved the diagnosis of drug-resistant tuberculosis but is limited by our lack of knowledge of all resistance mechanisms. Next-generation sequencing has assisted in identifying the principal genetic mechanisms of resistance for many drugs, but a significant proportion of phenotypic drug resistance is unexplained genetically. Few studies have formally compared the transcriptomes of susceptible and resistant Mycobacterium tuberculosis strains. We carried out comparative whole-genome transcriptomics of extensively drug-resistant (XDR) clinical isolates using RNA sequencing (RNA-seq) to find novel transcription-mediated mechanisms of resistance. We identified a promoter mutation (t to c) at position −11 (t−11c) relative to the start codon of ethA that reduces the expression of a monooxygenase (EthA) that activates ethionamide. (In this article, nucleotide changes are lowercase and amino acid substitutions are uppercase.) Using a flow cytometry-based reporter assay, we show that the reduced transcription of ethA is not due to transcriptional repression by ethR. Clinical strains harboring this mutation were resistant to ethionamide. Other ethA promoter mutations were identified in a global genomic survey of resistant M. tuberculosis strains. These results demonstrate a new mechanism of ethionamide resistance that can cause high-level resistance when it is combined with other ethionamide resistance-conferring mutations. Our study revealed many other genes which were highly up- or downregulated in XDR strains, including a toxin-antitoxin module (mazF5 mazE5) and tRNAs (leuX and thrU). This suggests that global transcriptional modifications could contribute to resistance or the maintenance of bacterial fitness have also occurred in XDR strains.


2013 ◽  
Vol 57 (8) ◽  
pp. 3857-3863 ◽  
Author(s):  
Yi Hu ◽  
Sven Hoffner ◽  
Linlin Wu ◽  
Qi Zhao ◽  
Weili Jiang ◽  
...  

ABSTRACTThis study aimed to investigate the prevalence of resistance to second-line antituberculosis (anti-TB) drugs and its association with resistance-related mutations inMycobacterium tuberculosisisolated in China. In the present study, we collected 380 isolates from a population-based study in China and tested the drug susceptibility to first- and selected second-line drugs. These results were compared with polymorphisms in the DNA sequences of genes associated with drug resistance and MIC values of the studied second-line drugs. Of 43 multidrug-resistantM. tuberculosisisolates, 13 showed resistance to fluoroquinolones or injectable second-line drugs (preextensively drug-resistant TB [pre-XDR-TB]), and 4 were resistant to both and thus defined as extensively drug-resistant TB (XDR-TB). Age and previous TB therapy, including use of second-line drugs, were two independent factors associated with increased resistance to both first- and second-line drugs. Molecular analysis identified the most frequent mutations in the resistance-associated genes: D94G ingyrA(29.1%) and A1401G inrrs(30.8%). Meanwhile, all 4 XDR-TB isolates had a mutation ingyrA, and 3 of them carried the A1401G mutation inrrs. Mutations ingyrAandrrswere associated with high-level resistance to fluoroquinolones and the second-line injectable drugs. In addition to the identification of resistance-associated mutations and development of a rapid molecular test to diagnose the second-line drug resistance, it should be a priority to strictly regulate the administration of second-line drugs to maintain their efficacy to treat multidrug-resistant TB.


2016 ◽  
Vol 55 (3) ◽  
pp. 791-800 ◽  
Author(s):  
Y. Gardee ◽  
A. W. Dreyer ◽  
H. J. Koornhof ◽  
S. V. Omar ◽  
P. da Silva ◽  
...  

ABSTRACT Early detection of resistance to second-line antituberculosis drugs is important for the management of multidrug-resistant tuberculosis (MDR-TB). The GenoType MTBDR sl version 2.0 (VER 2.0) line probe assay has been redesigned for molecular detection of resistance-conferring mutations of fluoroquinolones (FLQ) ( gyrA and gyrB genes) and second-line injectable drugs (SLID) ( rrs and eis genes). The study evaluated the diagnostic performance of the GenoType MTBDR sl VER 2.0 assay for the detection of second-line drug resistance compared with phenotypic drug susceptibility testing (DST), using the Bactec MGIT 960 system on Mycobacterium tuberculosis complex isolates from South Africa. A total of 268 repository isolates collected between 2012 and 2014, which were rifampin monoresistant or MDR based on DST, were selected. MTBDR sl VER 2.0 testing was performed on these isolates and the results analyzed. The MTBDR sl VER 2.0 sensitivity and specificity indices for culture isolates were the following: FLQ, 100% (95% confidence interval [CI] 95.8 to 100%) and 98.9% (95% CI, 96.1 to 99.9%); SLID, 89.2% (95% CI, 79.1 to 95.6%) and 98.5% (95% CI, 95.7 to 99.7%). The sensitivity and specificity observed for individual SLID were the following: amikacin, 93.8% (95% CI, 79.2 to 99.2%) and 98.5% (95% CI, 95.5 to 99.7%); kanamycin, 89.2% (95% CI, 79.1 to 95.6%) and 98.5% (95% CI, 95.5 to 99.7%); and capreomycin, 86.2% (95% CI, 68.3 to 96.1%) and 95.9% (95% CI, 92.2 to 98.2%). An interoperator reproducibility of 100% and an overall interlaboratory performance of 93% to 96% were found. The overall improvement in sensitivity and specificity with excellent reproducibility makes the GenoType MTBDR sl VER 2.0 a highly suitable tool for rapid screening of clinical isolates for second-line drug resistance for use in high-burden TB/HIV settings.


2013 ◽  
Vol 57 (6) ◽  
pp. 2522-2525 ◽  
Author(s):  
Imran Ahmed ◽  
Kauser Jabeen ◽  
Raunaq Inayat ◽  
Rumina Hasan

ABSTRACTPakistan is a high-burden country for tuberculosis (TB). The emergence and increasing incidence of extensively drug-resistant (XDR) TB has been reported in Pakistan. Similarly, the prevalence of multidrug-resistant TB infections with fluoroquinolone resistance (pre-XDR) is also increasing. To treat these infections, local drug susceptibility patterns of alternate antituberculosis agents, including levofloxacin (LVX), linezolid (LZD), and amoxicillin-clavulanate (AMC), is urgently needed. The aim of this study was to determine the susceptibility frequencies of drug-resistant (DR)Mycobacterium tuberculosisagainst LVX, LZD, and AMC. All susceptibilities were determined on Middlebrook 7H10 agar. A critical concentration was used for LVX (1 μg/ml), whereas MICs were determined for LZD and AMC.M. tuberculosisH37Rv was used as a control strain. A total of 102M. tuberculosisisolates (XDR,n= 59; pre-XDR,n= 43) were tested. Resistance to LVX was observed in 91.2% (93/102). Using an MIC value of 0.5 μg/ml as a cutoff, resistance to LZD (MIC ≥ 1 μg/ml) was noted in 5.9% (6/102). Although the sensitivity breakpoints are not established for AMC, the MIC values were high (>16 μg/ml) in 97.1% (99/102). Our results demonstrate that LZD may be effective for the treatment of XDR and pre-XDR cases from Pakistan. High resistance rates against LVX in our study suggest the use of this drug with caution for DR-TB cases from this area. Drug susceptibility testing against LVX and AMC may be helpful in complicated and difficult-to-manage cases.


2014 ◽  
Vol 59 (1) ◽  
pp. 444-449 ◽  
Author(s):  
Analise Z. Reeves ◽  
Patricia J. Campbell ◽  
Melisa J. Willby ◽  
James E. Posey

ABSTRACTAs the prevalence of multidrug-resistant and extensively drug-resistant tuberculosis strains continues to rise, so does the need to develop accurate and rapid molecular tests to complement time-consuming growth-based drug susceptibility testing. Performance of molecular methods relies on the association of specific mutations with phenotypic drug resistance and while considerable progress has been made for resistance detection of first-line antituberculosis drugs, rapid detection of resistance for second-line drugs lags behind. TherrsA1401G allele is considered a strong predictor of cross-resistance between the three second-line injectable drugs, capreomycin (CAP), kanamycin, and amikacin. However, discordance is often observed between therrsA1401G mutation and CAP resistance, with up to 40% ofrrsA1401G mutants being classified as CAP susceptible. We measured the MICs to CAP in 53 clinical isolates harboring therrsA1401G mutation and found that the CAP MICs ranged from 8 μg/ml to 40 μg/ml. These results were drastically different from engineered A1401G mutants generated in isogenicMycobacterium tuberculosis, which exclusively exhibited high-level CAP MICs of 40 μg/ml. These data support the results of prior studies, which suggest that the critical concentration of CAP (10 μg/ml) used to determine resistance by indirect agar proportion may be too high to detect all CAP-resistant strains and suggest that a larger percentage of resistant isolates could be identified by lowering the critical concentration. These data also suggest that differences in resistance levels among clinical isolates are possibly due to second site or compensatory mutations located elsewhere in the genome.


2015 ◽  
Vol 59 (11) ◽  
pp. 7104-7108 ◽  
Author(s):  
Scott K. Heysell ◽  
Suporn Pholwat ◽  
Stellah G. Mpagama ◽  
Saumu J. Pazia ◽  
Happy Kumburu ◽  
...  

ABSTRACTMIC testing forMycobacterium tuberculosisis now commercially available. Drug susceptibility testing by the MycoTB MIC plate has not been directly compared to that by the Bactec MGIT 960. We describe a case of extensively drug-resistant tuberculosis (XDR-TB) in Tanzania where initial MIC testing may have prevented acquired resistance. From testing on archived isolates, the accuracy with the MycoTB plate was >90% for important first- and second-line drugs compared to that with the MGIT 960, and clinically useful quantitative interpretation was also provided.


2014 ◽  
Vol 58 (11) ◽  
pp. 7010-7014 ◽  
Author(s):  
Yasuhiro Horita ◽  
Shinji Maeda ◽  
Yuko Kazumi ◽  
Norio Doi

ABSTRACTWe evaluated the antituberculosis (anti-TB) activity of five β-lactams alone or in combination with β-lactamase inhibitors against 41 clinical isolates ofMycobacterium tuberculosis, including multidrug-resistant and extensively drug-resistant strains. Of those, tebipenem, an oral carbapenem, showed the most potent anti-TB activity against clinical isolates, with a MIC range of 0.125 to 8 μg/ml, which is achievable in the human blood. More importantly, in the presence of clavulanate, MIC values of tebipenem declined to 2 μg/ml or less.


2021 ◽  
Vol 10 (25) ◽  
Author(s):  
Norzuliana Zainal Abidin ◽  
Mohd Nur Fakhruzzaman Noorizhab ◽  
Lay Kek Teh ◽  
Wai Feng Lim ◽  
Noorliza Mohd Noordin ◽  
...  

In the battle against tuberculosis (TB), plasticity of the Mycobacterium tuberculosis genome is believed to contribute to the pathogen’s virulence and drug resistance. Here, we report 10 draft genome sequences of clinical M. tuberculosis isolated in Malaysia as the basis for understanding the genome plasticity of the M. tuberculosis isolates.


2011 ◽  
Vol 55 (5) ◽  
pp. 2032-2041 ◽  
Author(s):  
Patricia J. Campbell ◽  
Glenn P. Morlock ◽  
R. David Sikes ◽  
Tracy L. Dalton ◽  
Beverly Metchock ◽  
...  

ABSTRACTThe emergence of multi- and extensively drug-resistant tuberculosis is a significant impediment to the control of this disease because treatment becomes more complex and costly. Reliable and timely drug susceptibility testing is critical to ensure that patients receive effective treatment and become noninfectious. Molecular methods can provide accurate and rapid drug susceptibility results. We used DNA sequencing to detect resistance to the first-line antituberculosis drugs isoniazid (INH), rifampin (RIF), pyrazinamide (PZA), and ethambutol (EMB) and the second-line drugs amikacin (AMK), capreomycin (CAP), kanamycin (KAN), ciprofloxacin (CIP), and ofloxacin (OFX). Nine loci were sequenced:rpoB(for resistance to RIF),katGandinhA(INH),pncA(PZA),embB(EMB),gyrA(CIP and OFX), andrrs,eis, andtlyA(KAN, AMK, and CAP). A total of 314 clinicalMycobacterium tuberculosiscomplex isolates representing a variety of antibiotic resistance patterns, genotypes, and geographical origins were analyzed. The molecular data were compared to the phenotypic data and the accuracy values were calculated. Sensitivity and specificity values for the first-line drug loci were 97.1% and 93.6% forrpoB, 85.4% and 100% forkatG, 16.5% and 100% forinhA, 90.6% and 100% forkatGandinhAtogether, 84.6% and 85.8% forpncA, and 78.6% and 93.1% forembB. The values for the second-line drugs were also calculated. The size and scope of this study, in numbers of loci and isolates examined, and the phenotypic diversity of those isolates support the use of DNA sequencing to detect drug resistance in theM. tuberculosiscomplex. Further, the results can be used to design diagnostic tests utilizing other mutation detection technologies.


2016 ◽  
Vol 61 (3) ◽  
Author(s):  
Mariam O. Fofana ◽  
Sourya Shrestha ◽  
Gwenan M. Knight ◽  
Ted Cohen ◽  
Richard G. White ◽  
...  

ABSTRACT Several infectious diseases of global importance—e.g., HIV infection and tuberculosis (TB)—require prolonged treatment with combination antimicrobial regimens typically involving high-potency core agents coupled with additional companion drugs that protect against the de novo emergence of mutations conferring resistance to the core agents. Often, the most effective (or least toxic) companion agents are reused in sequential (first-line, second-line, etc.) regimens. We used a multistrain model of Mycobacterium tuberculosis transmission in Southeast Asia to investigate how this practice might facilitate the emergence of extensive drug resistance, i.e., resistance to multiple core agents. We calibrated this model to regional TB and drug resistance data using an approximate Bayesian computational approach. We report the proportion of data-consistent simulations in which the prevalence of pre-extensively drug-resistant (pre-XDR) TB—defined as resistance to both first-line and second-line core agents (rifampin and fluoroquinolones)—exceeds predefined acceptability thresholds (1 to 2 cases per 100,000 population by 2035). The use of pyrazinamide (the most effective companion agent) in both first-line and second-line regimens increased the proportion of simulations in which the prevalence exceeded the pre-XDR acceptability threshold by 7-fold compared to a scenario in which patients with pyrazinamide-resistant TB received an alternative drug. Model parameters related to the emergence and transmission of pyrazinamide-resistant TB and resistance amplification were among those that were the most strongly correlated with the projected pre-XDR prevalence, indicating that pyrazinamide resistance acquired during first-line treatment subsequently promotes amplification to pre-XDR TB under pyrazinamide-containing second-line treatment. These findings suggest that the appropriate use of companion drugs may be critical to preventing the emergence of strains resistant to multiple core agents.


Sign in / Sign up

Export Citation Format

Share Document