scholarly journals Whole-Transcriptome and -Genome Analysis of Extensively Drug-Resistant Mycobacterium tuberculosis Clinical Isolates Identifies Downregulation of ethA as a Mechanism of Ethionamide Resistance

2017 ◽  
Vol 61 (12) ◽  
Author(s):  
Lynne de Welzen ◽  
Vegard Eldholm ◽  
Kashmeel Maharaj ◽  
Abigail L. Manson ◽  
Ashlee M. Earl ◽  
...  

ABSTRACT Genetics-based drug susceptibility testing has improved the diagnosis of drug-resistant tuberculosis but is limited by our lack of knowledge of all resistance mechanisms. Next-generation sequencing has assisted in identifying the principal genetic mechanisms of resistance for many drugs, but a significant proportion of phenotypic drug resistance is unexplained genetically. Few studies have formally compared the transcriptomes of susceptible and resistant Mycobacterium tuberculosis strains. We carried out comparative whole-genome transcriptomics of extensively drug-resistant (XDR) clinical isolates using RNA sequencing (RNA-seq) to find novel transcription-mediated mechanisms of resistance. We identified a promoter mutation (t to c) at position −11 (t−11c) relative to the start codon of ethA that reduces the expression of a monooxygenase (EthA) that activates ethionamide. (In this article, nucleotide changes are lowercase and amino acid substitutions are uppercase.) Using a flow cytometry-based reporter assay, we show that the reduced transcription of ethA is not due to transcriptional repression by ethR. Clinical strains harboring this mutation were resistant to ethionamide. Other ethA promoter mutations were identified in a global genomic survey of resistant M. tuberculosis strains. These results demonstrate a new mechanism of ethionamide resistance that can cause high-level resistance when it is combined with other ethionamide resistance-conferring mutations. Our study revealed many other genes which were highly up- or downregulated in XDR strains, including a toxin-antitoxin module (mazF5 mazE5) and tRNAs (leuX and thrU). This suggests that global transcriptional modifications could contribute to resistance or the maintenance of bacterial fitness have also occurred in XDR strains.

2014 ◽  
Vol 59 (1) ◽  
pp. 414-420 ◽  
Author(s):  
Kanchan Ajbani ◽  
Shou-Yean Grace Lin ◽  
Camilla Rodrigues ◽  
Duylinh Nguyen ◽  
Francine Arroyo ◽  
...  

ABSTRACTReliable molecular diagnostics, which detect specific mutations associated with drug resistance, are promising technologies for the rapid identification and monitoring of drug resistance inMycobacterium tuberculosisisolates. Pyrosequencing (PSQ) has the ability to detect mutations associated with first- and second-line anti-tuberculosis (TB) drugs, with the additional advantage of being rapidly adaptable for the identification of new mutations. The aim of this project was to evaluate the performance of PSQ in predicting phenotypic drug resistance in multidrug- and extensively drug-resistant tuberculosis (M/XDR-TB) clinical isolates from India, South Africa, Moldova, and the Philippines. A total of 187 archived isolates were run through a PSQ assay in order to identifyM. tuberculosis(via the IS6110marker), and to detect mutations associated with M/XDR-TB within small stretches of nucleotides in selected loci. The molecular targets includedkatG, theinhApromoter and theahpC-oxyRintergenic region for isoniazid (INH) resistance; therpoBcore region for rifampin (RIF) resistance;gyrAfor fluoroquinolone (FQ) resistance; andrrsfor amikacin (AMK), capreomycin (CAP), and kanamycin (KAN) resistance. PSQ data were compared to phenotypic mycobacterial growth indicator tube (MGIT) 960 drug susceptibility testing results for performance analysis. The PSQ assay illustrated good sensitivity for the detection of resistance to INH (94%), RIF (96%), FQ (93%), AMK (84%), CAP (88%), and KAN (68%). The specificities of the assay were 96% for INH, 100% for RIF, FQ, AMK, and KAN, and 97% for CAP. PSQ is a highly efficient diagnostic tool that reveals specific nucleotide changes associated with resistance to the first- and second-line anti-TB drug medications. This methodology has the potential to be linked to mutation-specific clinical interpretation algorithms for rapid treatment decisions.


2013 ◽  
Vol 57 (6) ◽  
pp. 2522-2525 ◽  
Author(s):  
Imran Ahmed ◽  
Kauser Jabeen ◽  
Raunaq Inayat ◽  
Rumina Hasan

ABSTRACTPakistan is a high-burden country for tuberculosis (TB). The emergence and increasing incidence of extensively drug-resistant (XDR) TB has been reported in Pakistan. Similarly, the prevalence of multidrug-resistant TB infections with fluoroquinolone resistance (pre-XDR) is also increasing. To treat these infections, local drug susceptibility patterns of alternate antituberculosis agents, including levofloxacin (LVX), linezolid (LZD), and amoxicillin-clavulanate (AMC), is urgently needed. The aim of this study was to determine the susceptibility frequencies of drug-resistant (DR)Mycobacterium tuberculosisagainst LVX, LZD, and AMC. All susceptibilities were determined on Middlebrook 7H10 agar. A critical concentration was used for LVX (1 μg/ml), whereas MICs were determined for LZD and AMC.M. tuberculosisH37Rv was used as a control strain. A total of 102M. tuberculosisisolates (XDR,n= 59; pre-XDR,n= 43) were tested. Resistance to LVX was observed in 91.2% (93/102). Using an MIC value of 0.5 μg/ml as a cutoff, resistance to LZD (MIC ≥ 1 μg/ml) was noted in 5.9% (6/102). Although the sensitivity breakpoints are not established for AMC, the MIC values were high (>16 μg/ml) in 97.1% (99/102). Our results demonstrate that LZD may be effective for the treatment of XDR and pre-XDR cases from Pakistan. High resistance rates against LVX in our study suggest the use of this drug with caution for DR-TB cases from this area. Drug susceptibility testing against LVX and AMC may be helpful in complicated and difficult-to-manage cases.


2014 ◽  
Vol 58 (11) ◽  
pp. 7010-7014 ◽  
Author(s):  
Yasuhiro Horita ◽  
Shinji Maeda ◽  
Yuko Kazumi ◽  
Norio Doi

ABSTRACTWe evaluated the antituberculosis (anti-TB) activity of five β-lactams alone or in combination with β-lactamase inhibitors against 41 clinical isolates ofMycobacterium tuberculosis, including multidrug-resistant and extensively drug-resistant strains. Of those, tebipenem, an oral carbapenem, showed the most potent anti-TB activity against clinical isolates, with a MIC range of 0.125 to 8 μg/ml, which is achievable in the human blood. More importantly, in the presence of clavulanate, MIC values of tebipenem declined to 2 μg/ml or less.


2020 ◽  
Vol 9 (40) ◽  
Author(s):  
Peechanika Chopjitt ◽  
Thidathip Wongsurawat ◽  
Piroon Jenjaroenpun ◽  
Parichart Boueroy ◽  
Rujirat Hatrongjit ◽  
...  

ABSTRACT Here, we report the complete genome sequences of four clinical isolates of extensively drug-resistant Acinetobacter baumannii (XDRAB), isolated in Thailand. These results revealed multiple antimicrobial-resistant genes, each involving two sequence type 16 (ST16) isolates, ST2, and a novel sequence type isolate, ST1479.


2018 ◽  
Vol 62 (8) ◽  
Author(s):  
Zhaojing Zong ◽  
Wei Jing ◽  
Jin Shi ◽  
Shu'an Wen ◽  
Tingting Zhang ◽  
...  

ABSTRACT Oxazolidinones are efficacious in treating mycobacterial infections, including tuberculosis (TB) caused by drug-resistant Mycobacterium tuberculosis. In this study, we compared the in vitro activities and MIC distributions of delpazolid, a novel oxazolidinone, and linezolid against multidrug-resistant TB (MDR-TB) and extensively drug-resistant TB (XDR-TB) in China. Additionally, genetic mutations in 23S rRNA, rplC, and rplD genes were analyzed to reveal potential mechanisms underlying the observed oxazolidinone resistance. A total of 240 M. tuberculosis isolates were included in this study, including 120 MDR-TB isolates and 120 XDR-TB isolates. Overall, linezolid and delpazolid MIC90 values for M. tuberculosis isolates were 0.25 mg/liter and 0.5 mg/liter, respectively. Based on visual inspection, we tentatively set epidemiological cutoff (ECOFF) values for MIC determinations for linezolid and delpazolid at 1.0 mg/liter and 2.0 mg/liter, respectively. Although no significant difference in resistance rates was observed between linezolid and delpazolid among XDR-TB isolates (P > 0.05), statistical analysis revealed a significantly greater proportion of linezolid-resistant isolates than delpazolid-resistant isolates within the MDR-TB group (P = 0.036). Seven (53.85%) of 13 linezolid-resistant isolates were found to harbor mutations within the three target genes. Additionally, 1 isolate exhibited an amino acid substitution (Arg126His) within the protein encoded by rplD that contributed to high-level resistance to linezolid (MIC of >16 mg/liter), compared to a delpazolid MIC of 0.25. In conclusion, in vitro susceptibility testing revealed that delpazolid antibacterial activity was comparable to that of linezolid. A novel mutation within rplD that endowed M. tuberculosis with linezolid, but not delpazolid, resistance was identified.


2016 ◽  
Vol 54 (12) ◽  
pp. 2969-2974 ◽  
Author(s):  
Laura Pérez-Lago ◽  
Miguel Martínez-Lirola ◽  
Sergio García ◽  
Marta Herranz ◽  
Igor Mokrousov ◽  
...  

Current migratory movements require new strategies for rapidly tracking the transmission of high-risk importedMycobacterium tuberculosisstrains. Whole-genome sequencing (WGS) enables us to identify single-nucleotide polymorphisms (SNPs) and therefore design PCRs to track specific relevant strains. However, fast implementation of these strategies in the hospital setting is difficult because professionals working in diagnostics, molecular epidemiology, and genomics are generally at separate institutions. In this study, we describe the urgent implementation of a system that integrates genomics and molecular tools in a genuine high-risk epidemiological alert involving 2 independent importations of extensively drug resistant (XDR) and pre-XDR BeijingM. tuberculosisstrains from Russia into Spain. Both cases involved commercial sex workers with long-standing tuberculosis (TB). The system was based on strain-specific PCRs tailored from WGS data that were transferred to the local node that was managing the epidemiological alert. The optimized tests were available for prospective implementation in the local node 33 working days after receiving the primary cultures of the XDR strains and were applied to all 42 new incident cases. An interpretable result was obtained in each case (directly from sputum for 27 stain-positive cases) and corresponded to the amplification profiles for strains other than the targeted pre-XDR and XDR strains, which made it possible to prospectively rule out transmission of these high-risk strains at diagnosis.


2019 ◽  
Vol 8 (12) ◽  
Author(s):  
Sivakumar Shanmugam ◽  
Narender Kumar ◽  
Dina Nair ◽  
Mohan Natrajan ◽  
Srikanth Prasad Tripathy ◽  
...  

The genomes of 16 clinical Mycobacterium tuberculosis isolates were subjected to whole-genome sequencing to identify mutations related to resistance to one or more anti-Mycobacterium drugs. The sequence data will help in understanding the genomic characteristics of M. tuberculosis isolates and their resistance mutations prevalent in South India.


Sign in / Sign up

Export Citation Format

Share Document