scholarly journals JPC-2997, a New Aminomethylphenol with HighIn VitroandIn VivoAntimalarial Activities against Blood Stages of Plasmodium

2014 ◽  
Vol 59 (1) ◽  
pp. 170-177 ◽  
Author(s):  
Geoffrey W. Birrell ◽  
Marina Chavchich ◽  
Arba L. Ager ◽  
Hong-Ming Shieh ◽  
Gavin D. Heffernan ◽  
...  

ABSTRACT4-(tert-Butyl)-2-((tert-butylamino)methyl)-6-(6-(trifluoromethyl)pyridin-3-yl)-phenol (JPC-2997) is a new aminomethylphenol compound that is highly activein vitroagainst the chloroquine-sensitive D6, the chloroquine-resistant W2, and the multidrug-resistant TM90-C2BPlasmodium falciparumlines, with 50% inhibitory concentrations (IC50s) ranging from 7 nM to 34 nM. JPC-2997 is >2,500 times less cytotoxic (IC50s > 35 μM) to human (HepG2 and HEK293) and rodent (BHK) cell lines than the D6 parasite line. In comparison to the chemically related WR-194,965, a drug that had advanced to clinical studies, JPC-2997 was 2-fold more activein vitroagainstP. falciparumlines and 3-fold less cytotoxic. The compound possesses potentin vivosuppression activity againstPlasmodium berghei, with a 50% effective dose (ED50) of 0.5 mg/kg of body weight/day following oral dosing in the Peters 4-day test. The radical curative dose of JPC-2997 was remarkably low, at a total dose of 24 mg/kg, using the modified Thompson test. JPC-2997 was effective in curing threeAotusmonkeys infected with a chloroquine- and pyrimethamine-resistant strain ofPlasmodium vivaxat a dose of 20 mg/kg daily for 3 days. At the doses administered, JPC-2997 appeared to be well tolerated in mice and monkeys. Preliminary studies of JPC-2997 in mice show linear pharmacokinetics over the range 2.5 to 40 mg/kg, a low clearance of 0.22 liters/h/kg, a volume of distribution of 15.6 liters/kg, and an elimination half-life of 49.8 h. The highin vivopotency data and lengthy elimination half-life of JPC-2997 suggest that it is worthy of further preclinical assessment as a partner drug.

2018 ◽  
Vol 62 (4) ◽  
Author(s):  
Geoffrey W. Birrell ◽  
Gavin D. Heffernan ◽  
Guy A. Schiehser ◽  
John Anderson ◽  
Arba L. Ager ◽  
...  

ABSTRACTThe new 2-aminomethylphenol, JPC-3210, has potentin vitroantimalarial activity against multidrug-resistantPlasmodium falciparumlines, low cytotoxicity, and highin vivoefficacy against murine malaria. Here we report on the pharmacokinetics of JPC-3210 in mice and monkeys and the results ofin vitroscreening assays, including the inhibition of cytochrome P450 (CYP450) isozymes. In mice, JPC-3210 was rapidly absorbed and had an extensive tissue distribution, with a brain tissue-to-plasma concentration ratio of about 5.4. JPC-3210 had a lengthy plasma elimination half-life of about 4.5 days in mice and 11.8 days in monkeys. JPC-3210 exhibited linear single-oral-dose pharmacokinetics across the dose range of 5 to 40 mg/kg of body weight with high oral bioavailability (∼86%) in mice. Systemic blood exposure of JPC-3210 was 16.6% higher inP. berghei-infected mice than in healthy mice.In vitrostudies with mice and human hepatocytes revealed little metabolism and the high metabolic stability of JPC-3210. The abundance of human metabolites from oxidation and glucuronidation was 2.0% and 2.5%, respectively. CYP450 studies in human liver microsomes showed JPC-3210 to be an inhibitor of CYP2D6 and, to a lesser extent, CYP3A4 isozymes, suggesting the possibility of a metabolic drug-drug interaction with drugs that are metabolized by these isozymes.In vitrostudies showed that JPC-3210 is highly protein bound to human plasma (97%). These desirable pharmacological findings of a lengthy blood elimination half-life, high oral bioavailability, and low metabolism as well as highin vivopotency have led the Medicines for Malaria Venture to select JPC-3210 (MMV892646) for further advanced preclinical development.


2017 ◽  
Vol 5 (1) ◽  
pp. 11 ◽  
Author(s):  
Mohamed Elbadawy ◽  
Mohamed Aboubakr

The aim of present study was to determine the pharmacokinetics and tissue residues of tilmicosin phosphate (tilmicoral®) as well as its in vitro and in vivo evaluation for control of Mycoplasma gallisepticum (MG) infection in broiler chickens. Pharmacokinetics (single oral dose) and tissues residues (daily for five days) of tilmicosin (25 mg/kg b.wt) in broilers were investigated. Peak plasma concentration of tilmicosin was 1.25±0.0.09 μg/mL and achieved at 3.15±0.34 h. Elimination half-life was long (44.3±7.22 h) and Vdarea was large (1.25±0.082 L/kg). Residue study revealed a good distribution and penetration of tilmicosine in lung, liver, kidney and muscles. Tilmicosin could not be detected in all tested tissues (except in lung) at 6 days after last administration. The MIC of tilmicosin and tylosin against MG were 0.054 and 0.319 μg/mL, respectively. MG infected chickens and treated by tilmicosin or tylosin showed a significant (p<0.05) improvement in mean body weights gain and a significant (p<0.05) decline in mean clinical signs score, air sac lesion score and mortality rate, however tilmicosin was a superior drug. In conclusion, timicoral® was a very effective medication for controlling MG infection in broiler chickens due to its rapid absorption, long elimination half-life, rapid and extensive penetration from blood into tissues especially lungs and air sacs. Additionally, tilmicoral® had a short withdrawal time. Moreover, its superior efficacy (in vitro and in vivo) against MG.


2012 ◽  
Vol 56 (9) ◽  
pp. 4685-4692 ◽  
Author(s):  
Fabián E. Sáenz ◽  
Tina Mutka ◽  
Kenneth Udenze ◽  
Ayoade M. J. Oduola ◽  
Dennis E. Kyle

ABSTRACTNew drugs to treat malaria must act rapidly and be highly potent against asexual blood stages, well tolerated, and affordable to residents of regions of endemicity. This was the case with chloroquine (CQ), a 4-aminoquinoline drug used for the prevention and treatment of malaria. However, since the 1960s,Plasmodium falciparumresistance to this drug has spread globally, and more recently, emerging resistance to CQ byPlasmodium vivaxthreatens the health of 70 to 320 million people annually. Despite the emergence of CQ resistance, synthetic quinoline derivatives remain validated leads for new drug discovery, especially if they are effective against CQ-resistant strains of malaria. In this study, we investigated the activities of two novel 4-aminoquinoline derivatives, TDR 58845,N1-(7-chloro-quinolin-4-yl)-2-methyl-propane-1,2-diamine, and TDR 58846,N1-(7-chloro-quinolin-4-yl)-2,N2,N2-trimethylpropane-1,2-diamine and found them to be active againstP. falciparumin vitroandPlasmodium bergheiin vivo. TheP. falciparumclones and isolates tested were susceptible to TDR 58845 and TDR 58846 (50% inhibitory concentrations [IC50s] ranging from 5.52 to 89.8 nM), including the CQ-resistant reference clone W2 and two multidrug-resistant parasites recently isolated from Thailand and Cambodia. Moreover, these 4-aminoquinolines were active against early and lateP. falciparumgametocyte stages and cured BALB/c mice infected withP. berghei. TDR 58845 and TDR 58846 at 40 mg/kg were sufficient to cure mice, and total doses of 480 mg/kg of body weight were well tolerated. Our findings suggest these novel 4-aminoquinolines should be considered for development as potent antimalarials that can be used in combination to treat multidrug-resistantP. falciparumandP. vivax.


Author(s):  
Shiwangi Jain ◽  
Mayank Bansal ◽  
Ashutosh Sharma

Pantoprazole is extensively metabolized in the liver and has a total serum clearance of 0.1 l/h/kg, a serum elimination half-life of about 1.1 h, and an apparent volume of distribution of 0.15 L/kg. 98% of pantoprazole is bound to serum proteins. Elimination half-life, clearance, and volume of distribution are independent of the dose. Almost 80% of an oral or intravenous dose is excreted as metabolites in urine; the remainder is found in feces and originates from biliary secretion. The clearance of pantoprazole is only slightly affected by age, with its half-life being approximately 1.25 h in the elderly. Pantoprazole is an acid labile drug that requires protection from degradation in acidic media. Hence, co-crystallization of pantoprazole sodium with appropriate co-formers will inhibit its degradation in acidic medium ensuring fast release in the stomach. The acid-labile drugs for oral administration may also be protected from gastric acidity by inhibiting its degradation upon entering into acidic environment. So, the current approach includes co-crystallization of the provided drug with appropriate co-former which prevents degradation of drug by quick absorption and protects the drug from low pH. Apart from that, the formulations also modulate or control the drug release for an immediate action. Keywords: Pantoprazole sodium, Co-crystal, solvent drop method, Co-former.


2015 ◽  
Vol 59 (4) ◽  
pp. 1983-1991 ◽  
Author(s):  
Rolf Lood ◽  
Benjamin Y. Winer ◽  
Adam J. Pelzek ◽  
Roberto Diez-Martinez ◽  
Mya Thandar ◽  
...  

ABSTRACTAcinetobacter baumannii, a Gram-negative multidrug-resistant (MDR) bacterium, is now recognized as one of the more common nosocomial pathogens. Because most clinical isolates are found to be multidrug resistant, alternative therapies need to be developed to control this pathogen. We constructed a bacteriophage genomic library based on prophages induced from 13A. baumanniistrains and screened it for genes encoding bacteriolytic activity. Using this approach, we identified 21 distinct lysins with different activities and sequence diversity that were capable of killingA. baumannii. The lysin (PlyF307) displaying the greatest activity was further characterized and was shown to efficiently kill (>5-log-unit decrease) all testedA. baumanniiclinical isolates. Treatment with PlyF307 was able to significantly reduce planktonic and biofilmA. baumanniibothin vitroandin vivo. Finally, PlyF307 rescued mice from lethalA. baumanniibacteremia and as such represents the first highly active therapeutic lysin specific for Gram-negative organisms in an array of native lysins found inAcinetobacterphage.


2016 ◽  
Vol 4 (2) ◽  
pp. 144
Author(s):  
Ashraf El-Komy ◽  
Taha Attia ◽  
Amera Abd El Latif ◽  
Hanem Fathy

The pharmacokinetics of marbofloxacin was studied following a single intravenous, oral administration in normal broiler chickens and repeated oral administrations in normal and experimentally E.coli infected broiler chickens. The pharmacokinetic parameters following a single intravenous injection of 2 mg/kg b.wt., revealed that marbofloxacin obeyed a two compartments open model, distribution half-life (t0.5(α)) was 0.25±0.02 h, volume of distribution (Vdss) was 0.76±0.08 L/kg, elimination half-life (t0.5(β)) was 5.43±0.87 h and total body clearance (CLtot) was 0.09±0.002 l/kg/h. Following a single oral administration, marbofloxacin was rapidly and efficiently absorbed through gastrointestinal tract of chickens as the absorption half-life (t0.5 (ab): 0.62±0.02 h). Maximum serum concentration (Cmax) was 1.15±0.01 μg/ml, reached its maximum time (tmax) at 2.53±0.04 h, elimination half-life (t0.5 (el)) was 7.36±0.20 h indicating the tendency of chickens to eliminate marbofloxacin in slow rate. Oral bioavailability was 73.57± 1.90 % indicating good absorption of marbofloxacin after oral administration. Serum concentrations of marbofloxacin following repeated oral administration of 2 mg/kg b.wt. once daily for five consecutive days, peaked 2 hours after each oral dose with lower significant values recorded in experimentally infected broiler chickens than in normal ones. Tissues residues of marbofloxacin in slaughtered normal chickens was highly in those tissues lung, liver, and kidneys in chickens and the chicken must not be slaughtered before 3 days of stopping of drug administration. It was concluded that the in- vitro protein binding was 12.33±0.82%.


2017 ◽  
Vol 62 (2) ◽  
Author(s):  
Alexander J. Lepak ◽  
Miao Zhao ◽  
Brian VanScoy ◽  
Paul G. Ambrose ◽  
David R. Andes

ABSTRACT Echinocandins are important in the prevention and treatment of invasive candidiasis but limited by current dosing regimens that include daily intravenous administration. The novel echinocandin CD101 has a prolonged half-life of approximately 130 h in humans, making it possible to design once-weekly dosing strategies. The present study examined the pharmacodynamic activity of CD101 using the neutropenic invasive candidiasis mouse model against select Candida albicans (n = 4), C. glabrata (n = 3), and C. parapsilosis (n = 3) strains. The CD101 MIC ranged from 0.03 to 1 mg/liter. Plasma pharmacokinetic measurements were performed using uninfected mice after intraperitoneal administration of 1, 4, 16, and 64 mg/kg. The elimination half-life was prolonged at 28 to 41 h. Neutropenic mice were infected with each strain by lateral tail vein injection, treated with a single dose of CD101, and monitored for 7 days, at which time the organism burden was enumerated from the kidneys. Dose-dependent activity was observed for each organism. The pharmacokinetic/pharmacodynamic (PK/PD) index of the area under the concentration-time curve over 24 h in the steady state divided by the MIC (AUC/MIC index) correlated well with efficacy (R 2, 0.74 to 0.93). The median stasis 24-h free-drug AUC/MIC targets were as follows: for C. albicans, 2.92; for C. glabrata, 0.07; and for C. parapsilosis, 2.61. The PK/PD targets for 1-log10 kill endpoint were 2- to 4-fold higher. Interestingly, the aforementioned PK/PD targets of CD101 were numerically lower for all three species than those of other echinocandins. In summary, CD101 is a promising, novel echinocandin with advantageous pharmacokinetic properties and potent in vivo pharmacodynamic activity.


2015 ◽  
Vol 59 (4) ◽  
pp. 2280-2285 ◽  
Author(s):  
Robert K. Flamm ◽  
Paul R. Rhomberg ◽  
Ronald N. Jones ◽  
David J. Farrell

ABSTRACTRX-P873 is a novel antibiotic from the pyrrolocytosine series which exhibits high binding affinity for the bacterial ribosome and broad-spectrum antibiotic properties. The pyrrolocytosines have shownin vitroactivity against multidrug-resistant Gram-negative and Gram-positive strains of bacteria known to cause complicated urinary tract, skin, and lung infections, as well as sepsis.Enterobacteriaceae(657),Pseudomonas aeruginosa(200), andAcinetobacter baumannii(202) isolates from North America and Europe collected in 2012 as part of a worldwide surveillance program were testedin vitroby broth microdilution using Clinical and Laboratory Standards Institute (CLSI) methodology. RX-P873 (MIC90, 0.5 μg/ml) was >32-fold more active than ceftazidime and inhibited 97.1% and 99.5% ofEnterobacteriaceaeisolates at MIC values of ≤1 and ≤4 μg/ml, respectively. There were only three isolates with an MIC value of >4 μg/ml (all were indole-positiveProtea). RX-P873 (MIC50/90, 2/4 μg/ml) was highly active againstPseudomonas aeruginosaisolates, including isolates which were nonsusceptible to ceftazidime or meropenem. RX-P873 was 2-fold less active againstP. aeruginosathan tobramycin (MIC90, 2 μg/ml; 91.0% susceptible) and colistin (MIC90, 2 μg/ml; 99.5% susceptible) and 2-fold more potent than amikacin (MIC90, 8 μg/ml; 93.5% susceptible) and meropenem (MIC90, 8 μg/ml; 76.0% susceptible). RX-P873, the most active agent againstAcinetobacter baumannii(MIC90, 1 μg/ml), was 2-fold more active than colistin (MIC90, 2 μg/ml; 97.0% susceptible) and 4-fold more active than tigecycline (MIC90, 4 μg/ml). This novel agent merits further exploration of its potential against multidrug-resistant Gram-negative bacteria.


2020 ◽  
Vol 64 (5) ◽  
Author(s):  
Gregory G. Stone ◽  
Patricia A. Bradford ◽  
Margaret Tawadrous ◽  
Dianna Taylor ◽  
Mary Jane Cadatal ◽  
...  

ABSTRACT Nosocomial pneumonia (NP), including ventilator-associated pneumonia (VAP), is increasingly associated with multidrug-resistant Gram-negative pathogens. This study describes the in vitro activity of ceftazidime-avibactam, ceftazidime, and relevant comparator agents against bacterial pathogens isolated from patients with NP, including VAP, enrolled in a ceftazidime-avibactam phase 3 trial. Gram-positive pathogens were included if coisolated with a Gram-negative pathogen. In vitro susceptibility was determined at a central laboratory using Clinical and Laboratory Standards Institute broth microdilution methods. Of 817 randomized patients, 457 (55.9%) had ≥1 Gram-negative bacterial pathogen(s) isolated at baseline, and 149 (18.2%) had ≥1 Gram-positive pathogen(s) coisolated. The most common isolated pathogens were Klebsiella pneumoniae (18.8%), Pseudomonas aeruginosa (15.8%), and Staphylococcus aureus (11.5%). Ceftazidime-avibactam was highly active in vitro against 370 isolates of Enterobacteriaceae, with 98.6% susceptible (MIC90, 0.5 μg/ml) compared with 73.2% susceptible for ceftazidime (MIC90, >64 μg/ml). The percent susceptibility values for ceftazidime-avibactam and ceftazidime against 129 P. aeruginosa isolates were 88.4% and 72.9% (MIC90 values of 16 μg/ml and 64 μg/ml), respectively. Among ceftazidime-nonsusceptible Gram-negative isolates, ceftazidime-avibactam percent susceptibility values were 94.9% for 99 Enterobacteriaceae and 60.0% for 35 P. aeruginosa. MIC90 values for linezolid and vancomycin (permitted per protocol for Gram-positive coverage) were within their respective MIC susceptibility breakpoints against the Gram-positive pathogens isolated. This analysis demonstrates that ceftazidime-avibactam was active in vitro against the majority of Enterobacteriaceae and P. aeruginosa isolates from patients with NP, including VAP, in a phase 3 trial. (This study has been registered at ClinicalTrials.gov under identifier NCT01808092.)


2019 ◽  
Vol 63 (6) ◽  
Author(s):  
Katharina Schaufler ◽  
Torsten Semmler ◽  
Lothar H. Wieler ◽  
Darren J. Trott ◽  
Johann Pitout ◽  
...  

ABSTRACT The pathogenic extended-spectrum-beta-lactamase (ESBL)-producing Escherichia coli lineage ST648 is increasingly reported from multiple origins. Our study of a large and global ST648 collection from various hosts (87 whole-genome sequences) combining core and accessory genomics with functional analyses and in vivo experiments suggests that ST648 is a nascent and generalist lineage, lacking clear phylogeographic and host association signals. By including large numbers of ST131 (n = 107) and ST10 (n = 96) strains for comparative genomics and phenotypic analysis, we demonstrate that the combination of multidrug resistance and high-level virulence are the hallmarks of ST648, similar to international high-risk clonal lineage ST131. Specifically, our in silico, in vitro, and in vivo results demonstrate that ST648 is well equipped with biofilm-associated features, while ST131 shows sophisticated signatures indicative of adaption to urinary tract infection, potentially conveying individual ecological niche adaptation. In addition, we used a recently developed NFDS (negative frequency-dependent selection) population model suggesting that ST648 will increase significantly in frequency as a cause of bacteremia within the next few years. Also, ESBL plasmids impacting biofilm formation aided in shaping and maintaining ST648 strains to successfully emerge worldwide across different ecologies. Our study contributes to understanding what factors drive the evolution and spread of emerging international high-risk clonal lineages.


Sign in / Sign up

Export Citation Format

Share Document