scholarly journals Evolution of Carbapenem-Resistant Acinetobacter baumannii Revealed through Whole-Genome Sequencing and Comparative Genomic Analysis

2014 ◽  
Vol 59 (2) ◽  
pp. 1168-1176 ◽  
Author(s):  
Henan Li ◽  
Fei Liu ◽  
Yawei Zhang ◽  
Xiaojuan Wang ◽  
Chunjiang Zhao ◽  
...  

ABSTRACTAcinetobacter baumanniiis a globally important nosocomial pathogen characterized by an evolving multidrug resistance. A total of 35 representative clinicalA. baumanniistrains isolated from 13 hospitals in nine cities in China from 1999 to 2011, including 32 carbapenem-resistant and 3 carbapenem-susceptibleA. baumanniistrains, were selected for whole-genome sequencing and comparative genomic analysis. Phylogenetic analysis revealed that the earliest strain, strain 1999BJAB11, and two strains isolated in Zhejiang Province in 2004 were the founder strains of carbapenem-resistantA. baumannii. Ten types of AbaR resistance islands were identified, and a previously unreported AbaR island, which comprised a two-component response regulator, resistance-related proteins, and RND efflux system proteins, was identified in two strains isolated in Zhejiang in 2004. Multiple transposons or insertion sequences (ISs) existed in each strain, and these gradually tended to diversify with evolution. Some of these IS elements or transposons were the first to be reported, and most of them were mainly found in strains from two provinces. Genome feature analysis illustrated diversified resistance genes, surface polysaccharides, and a restriction-modification system, even in strains that were phylogenetically and epidemiologically very closely related. IS-mediated deletions were identified in the type VI secretion system region, thecsuEregion, and core lipooligosaccharide (LOS) loci. Recombination occurred in the heme utilization region, and intrinsic resistance genes (blaADCandblaOXA-51-likevariants) and three novelblaOXA-51-likevariants (blaOXA-424,blaOXA-425, andblaOXA-426) were identified. Our results could improve the understanding of the evolutionary processes that contribute to the emergence of carbapenem-resistantA. baumanniistrains and help elucidate the molecular evolutionary mechanism inA. baumannii.

mBio ◽  
2015 ◽  
Vol 6 (4) ◽  
Author(s):  
Nicole D. Pecora ◽  
Ning Li ◽  
Marc Allard ◽  
Cong Li ◽  
Esperanza Albano ◽  
...  

ABSTRACT Carbapenem-resistant Enterobacteriaceae (CRE) are an urgent public health concern. Rapid identification of the resistance genes, their mobilization capacity, and strains carrying them is essential to direct hospital resources to prevent spread and improve patient outcomes. Whole-genome sequencing allows refined tracking of both chromosomal traits and associated mobile genetic elements that harbor resistance genes. To enhance surveillance of CREs, clinical isolates with phenotypic resistance to carbapenem antibiotics underwent whole-genome sequencing. Analysis of 41 isolates of Klebsiella pneumoniae and Enterobacter cloacae, collected over a 3-year period, identified K. pneumoniae carbapenemase (KPC) genes encoding KPC-2, −3, and −4 and OXA-48 carbapenemases. All occurred within transposons, including multiple Tn4401 transposon isoforms, embedded within more than 10 distinct plasmids representing incompatibility (Inc) groups IncR, -N, -A/C, -H, and -X. Using short-read sequencing, draft maps were generated of new KPC-carrying vectors, several of which were derivatives of the IncN plasmid pBK31551. Two strains also had Tn4401 chromosomal insertions. Integrated analyses of plasmid profiles and chromosomal single-nucleotide polymorphism (SNP) profiles refined the strain patterns and provided a baseline hospital mobilome to facilitate analysis of new isolates. When incorporated with patient epidemiological data, the findings identified limited outbreaks against a broader 3-year period of sporadic external entry of many different strains and resistance vectors into the hospital. These findings highlight the utility of genomic analyses in internal and external surveillance efforts to stem the transmission of drug-resistant strains within and across health care institutions. IMPORTANCE We demonstrate how detection of resistance genes within mobile elements and resistance-carrying strains furthers active surveillance efforts for drug resistance. Whole-genome sequencing is increasingly available in hospital laboratories and provides a powerful and nuanced means to define the local landscape of drug resistance. In this study, isolates of Klebsiella pneumoniae and Enterobacter cloacae with resistance to carbapenem antibiotics were sequenced. Multiple carbapenemase genes were identified that resided in distinct transposons and plasmids. This mobilome, or population of mobile elements capable of mobilizing drug resistance, further highlighted the degree of strain heterogeneity while providing a detailed timeline of carbapenemase entry into the hospital over a 3-year period. These surveillance efforts support effective targeting of infection control resources and the development of institution-specific repositories of resistance genes and the mobile elements that carry them.


Sign in / Sign up

Export Citation Format

Share Document