scholarly journals Agreement Assessment of Tigecycline Susceptibilities Determined by the Disk Diffusion and Broth Microdilution Methods among Commonly Encountered Resistant Bacterial Isolates: Results from the TigecyclineIn VitroSurveillance in Taiwan (TIST) Study, 2008 to 2010

2011 ◽  
Vol 56 (3) ◽  
pp. 1414-1417 ◽  
Author(s):  
Jien-Wei Liu ◽  
Wen-Chien Ko ◽  
Cheng-Hua Huang ◽  
Chun-Hsing Liao ◽  
Chin-Te Lu ◽  
...  

ABSTRACTThe TigecyclineIn VitroSurveillance in Taiwan (TIST) study, initiated in 2006, is a nationwide surveillance program designed to longitudinally monitor thein vitroactivity of tigecycline against commonly encountered drug-resistant bacteria. This study compared thein vitroactivity of tigecycline against 3,014 isolates of clinically important drug-resistant bacteria using the standard broth microdilution and disk diffusion methods. Species studied included methicillin-resistantStaphylococcus aureus(MRSA;n= 759), vancomycin-resistantEnterococcus faecium(VRE;n= 191), extended-spectrum β-lactamase (ESBL)-producingEscherichia coli(n= 602), ESBL-producingKlebsiella pneumoniae(n= 736), andAcinetobacter baumannii(n= 726) that had been collected from patients treated between 2008 and 2010 at 20 hospitals in Taiwan. MICs and inhibition zone diameters were interpreted according to the currently recommended U.S. Food and Drug Administration (FDA) criteria and the European Committee on Antimicrobial Susceptibility Testing (EUCAST) criteria. The MIC90values of tigecycline against MRSA, VRE, ESBL-producingE. coli, ESBL-producingK. pneumoniae, andA. baumanniiwere 0.5, 0.125, 0.5, 2, and 8 μg/ml, respectively. The total error rates between the two methods using the FDA criteria were high: 38.4% for ESBL-producingK. pneumoniaeand 33.8% forA. baumannii. Using the EUCAST criteria, the total error rate was also high (54.6%) forA. baumanniiisolates. The total error rates between these two methods were <5% for MRSA, VRE, and ESBL-producingE. coli. For routine susceptibility testing of ESBL-producingK. pneumoniaeandA. baumanniiagainst tigecycline, the broth microdilution method should be used because of the poor correlation of results between these two methods.

2011 ◽  
Vol 56 (3) ◽  
pp. 1452-1457 ◽  
Author(s):  
Yen-Hsu Chen ◽  
Po-Liang Lu ◽  
Cheng-Hua Huang ◽  
Chun-Hsing Liao ◽  
Chin-Te Lu ◽  
...  

ABSTRACTThe TigecyclineIn VitroSurveillance in Taiwan (TIST) study, a nationwide, prospective surveillance during 2006 to 2010, collected a total of 7,793 clinical isolates, including methicillin-resistantStaphylococcus aureus(MRSA) (n= 1,834), penicillin-resistantStreptococcus pneumoniae(PRSP) (n= 423), vancomycin-resistant enterococci (VRE) (n= 219), extended-spectrum β-lactamase (ESBL)-producingEscherichia coli(n= 1,141), ESBL-producingKlebsiella pneumoniae(n= 1,330),Acinetobacter baumannii(n= 1,645), andStenotrophomonas maltophilia(n= 903), from different specimens from 20 different hospitals in Taiwan. MICs of tigecycline were determined following the criteria of the U.S. Food and Drug Administration (FDA) and the European Committee on Antimicrobial Susceptibility Testing (EUCAST-2011). Among drug-resistant Gram-positive pathogens, all of the PRSP isolates were susceptible to tigecycline (MIC90, 0.03 μg/ml), and only one MRSA isolate (MIC90, 0.5 μg/ml) and three VRE isolates (MIC90, 0.125 μg/ml) were nonsusceptible to tigecycline. Among the Gram-negative bacteria, the tigecycline susceptibility rates were 99.65% for ESBL-producingE. coli(MIC90, 0.5 μg/ml) and 96.32% for ESBL-producingK. pneumoniae(MIC90, 2 μg/ml) when interpreted by FDA criteria but were 98.7% and 85.8%, respectively, when interpreted by EUCAST-2011 criteria. The susceptibility rate forA. baumannii(MIC90, 4 μg/ml) decreased from 80.9% in 2006 to 55.3% in 2009 but increased to 73.4% in 2010. A bimodal MIC distribution was found among carbapenem-susceptibleA. baumanniiisolates, and a unimodal MIC distribution was found among carbapenem-nonsusceptibleA. baumanniiisolates. In Taiwan, tigecycline continues to have excellentin vitroactivity against several major clinically important drug-resistant bacteria, with the exception ofA. baumannii.


2012 ◽  
Vol 56 (6) ◽  
pp. 3309-3317 ◽  
Author(s):  
Sheng-An Li ◽  
Wen-Hui Lee ◽  
Yun Zhang

ABSTRACTAntimicrobial peptides (AMPs) have been considered alternatives to conventional antibiotics for drug-resistant bacterial infections. However, their comparatively high toxicity toward eukaryotic cells and poor efficacyin vivohamper their clinical application. OH-CATH30, a novel cathelicidin peptide deduced from the king cobra, possesses potent antibacterial activityin vitro. The objective of this study is to evaluate the efficacy of OH-CATH30 and its analog OH-CM6 against drug-resistant bacteriain vitroandin vivo. The MICs of OH-CATH30 and OH-CM6 ranged from 1.56 to 12.5 μg/ml against drug-resistant clinical isolates of several pathogenic species, includingEscherichia coli,Pseudomonas aeruginosa, and methicillin-resistantStaphylococcus aureus. The MICs of OH-CATH30 and OH-CM6 were slightly altered in the presence of 25% human serum. OH-CATH30 and OH-CM6 killedE. coliquickly (within 60 min) by disrupting the bacterial cytoplasmic membrane. Importantly, the 50% lethal doses (LD50) of OH-CATH30 and OH-CM6 in mice following intraperitoneal (i.p.) injection were 120 mg/kg of body weight and 100 mg/kg, respectively, and no death was observed at any dose up to 160 mg/kg following subcutaneous (s.c.) injection. Moreover, 10 mg/kg OH-CATH30 or OH-CM6 significantly decreased the bacterial counts as well as the inflammatory response in a mouse thigh infection model and rescued infected mice in a bacteremia model induced by drug-resistantE. coli. Taken together, our findings demonstrate that the natural cathelicidin peptide OH-CATH30 and its analogs exhibit relatively low toxicity and potent efficacy in mouse models, indicating that they may have therapeutic potential against the systemic infections caused by drug-resistant bacteria.


2019 ◽  
Vol 63 (3) ◽  
Author(s):  
William R. Wilson ◽  
Ellen G. Kline ◽  
Chelsea E. Jones ◽  
Kristin T. Morder ◽  
Roberta T. Mettus ◽  
...  

ABSTRACT Meropenem-vaborbactam is a new agent with the potential to treat carbapenem-resistant Enterobacteriaceae (CRE) infections. We describe the in vitro activity of meropenem-vaborbactam against representative CRE genotypes and laboratory-engineered Escherichia coli isolates harboring mutant blaKPC genes associated with ceftazidime-avibactam resistance. We also compared disk diffusion and gradient strip testing methods to standard broth microdilution methods. Against 120 CRE isolates, median ceftazidime-avibactam and meropenem-vaborbactam MICs were 1 and 0.03 µg/ml, respectively. Ninety-eight percent (117/120) of isolates were susceptible to meropenem-vaborbactam (MICs ≤ 4 µg/ml). Against Klebsiella pneumoniae isolates harboring mutant blaKPC, the addition of vaborbactam lowered the meropenem MICs in 78% of isolates (14/18); 100% were susceptible to meropenem-vaborbactam. Median meropenem-vaborbactam MICs were higher against K. pneumoniae carbapenemase (KPC)-producing K. pneumoniae isolates with mutant ompK36 porin genes (n = 26) than against those with wild-type ompK36 porin genes (n = 54) (0.25 versus 0.03 µg/ml; P < 0.0001). Against E. coli TOP10 isolates with plasmid constructs containing wild-type blaKPC or mutant blaKPC, the addition of vaborbactam at 8 µg/ml lowered the meropenem MICs 2- to 512-fold, resulting in meropenem-vaborbactam MICs of 0.03 µg/ml. The rates of categorical agreement with broth microdilution for disk diffusion or gradient strips ranged from 90 to 95%. Essential agreement rates were higher for research-use-only (RUO) gradient strips manufactured by bioMérieux (82%) than for those manufactured by Liofilchem (48%) (P < 0.0001). Taken together, our data highlight the potent in vitro activity of meropenem-vaborbactam against CRE, including isolates resistant to ceftazidime-avibactam. Vaborbactam inhibited both wild-type and variant KPC enzymes. On the other hand, KPC-producing K. pneumoniae isolates with ompK36 mutations displayed higher meropenem-vaborbactam MICs than isolates with wild-type ompK36. The results of susceptibility testing with RUO bioMérieux gradient strips most closely aligned with those of broth microdilution methods.


2020 ◽  
Vol 64 (4) ◽  
Author(s):  
Fatima Zohra Delma ◽  
Abdullah M. S. Al-Hatmi ◽  
Jochem B. Buil ◽  
Hein van der Lee ◽  
Marlou Tehupeiory-Kooreman ◽  
...  

ABSTRACT We compared MIC test strip (MTS) and Sensititre YeastOne (SYO) methods with EUCAST and CLSI methods for amphotericin B, 5-fluocytosine, fluconazole, voriconazole, and isavuconazole against 106 Cryptococcus neoformans isolates. The overall essential agreement between the EUCAST and CLSI methods was >72% and >94% at ±1 and ±2 dilutions, respectively. The essential agreements between SYO and EUCAST/CLSI for amphotericin B, 5-flucytosine, fluconazole, and voriconazole were >89/>93% and between MTS and EUCAST/CLSI were >57/>75%. Very major error rates were low for amphotericin B and fluconazole (<3%) and a bit higher for the other drugs (<8%).


2019 ◽  
Author(s):  
Elsa Hansen ◽  
Jason Karslake ◽  
Robert J. Woods ◽  
Andrew F. Read ◽  
Kevin B. Wood

AbstractStandard infectious disease practice calls for aggressive drug treatment that rapidly eliminates the pathogen population before resistance can emerge. When resistance is absent, this elimination strategy can lead to complete cure. However, it also removes drug-sensitive cells as quickly as possible, removing competitive barriers that may slow the growth of resistant cells. In contrast to the elimination strategy, the containment strategy aims to maintain the maximum tolerable number of pathogens, exploiting competitive suppression to achieve chronic control. Here we combine in vitro experiments in computer-controlled bioreactors with mathematical modeling to investigate whether containment strategies can delay failure of antibiotic treatment regimens. To do so, we measured the “escape time” required for drug-resistant E. coli populations to eclipse a threshold density maintained by adaptive antibiotic dosing. Populations containing only resistant cells rapidly escape containment, but we found that matched populations with the maximum possible number of sensitive cells could be contained for significantly longer. The increase in escape time occurs only when the threshold density–the acceptable bacterial burden–is sufficiently high, an effect that mathematical models attribute to increased competition. The findings provide decisive experimental confirmation that maintaining the maximum number of sensitive cells can be used to contain resistance when the size of the population is sufficiently large.


2020 ◽  
Vol 172 ◽  
pp. 113746
Author(s):  
Meiling Jiang ◽  
Xiaoqian Yang ◽  
Haomin Wu ◽  
Ya Huang ◽  
Jie Dou ◽  
...  

2014 ◽  
Vol 70 (a1) ◽  
pp. C714-C714
Author(s):  
Calvin Steussy ◽  
Cynthia Stauffacher ◽  
Mark Lipton ◽  
Mohamed Seleem

The emergence of multi-drug resistant pathogenic bacteria is one of the great challenges to modern medicine. The gram positive cocci Methicillin Resistant Staphylococcus aureus (MRSA) and Vancomycin Resistant Enterococcus faecalis (VRE) are two particularly virulent examples. In vivo studies have shown that the eukaryotic like 'mevalonate' isoprenoid pathway used by these pathogenic cocci is essential to their growth and virulence [1]. Our structures of HMG-CoA reductase (HMGR) from P. mevalonii demonstrated that the bacterial enzymes are structurally distinct from the human enzymes allowing for specific antibacterial activity [2]. High throughput in vitro screening against bacterial HMGR at the Southern Research Center, Birmingham, AL uncovered a lead compound with an IC50 of 80 µM with a competitive mode of action. Our x-ray crystal structures of HMGR from E. faecalis complexed with the lead compound and its variations have informed the synthesis of new inhibitors that have improved the IC50 to 5 µM [3]. Studies of this compound show it to be active against both MRSA and VRE in culture, effective against these bacteria in biofilms, and efficacious in a model system of eukaryotic infection. Structures and kinetics of these compounds will be presented and future directions discussed.


Sign in / Sign up

Export Citation Format

Share Document