scholarly journals In vitro activity of the trinem sanfetrinem (GV104326) against gram-positive organisms.

1996 ◽  
Vol 40 (9) ◽  
pp. 2142-2146 ◽  
Author(s):  
K V Singh ◽  
T M Coque ◽  
B E Murray

The in vitro activity of the trinem sanfetrinem (formerly GV104326) (GV) was compared with that of vancomycin, ampicillin, and/or nafcillin against 287 gram-positive bacteria, including methicillin-resistant Staphylococcus aureus and multiresistant enterococci, by the agar and microbroth dilution methods. GV demonstrated 2 to 16 times more activity than ampicillin and nafcillin against the majority of these organisms. The MIC range of GV was 16 to 64 micrograms/ml for 19 Enterococcus faecium strains that were highly resistant to ampicillin (ampicillin MIC range, 64 to 512 micrograms/ml) and vancomycin resistant and 0.25 to 32 micrograms/ml for resistant Rhodococcus spp. Similar activities (+/-1 dilution) were observed by either the agar or the broth microdilution method. GV demonstrated bactericidal activity against a beta-lactamase-producing Enterococcus faecalis strain and against two methicillin-susceptible Staphylococcus aureus strains in 10(5)-CFU/ml inocula. Synergy between GV and gentamicin was observed against an E. faecalis strain that lacked high-level gentamicin resistance. The activity of GV suggests this compound warrants further study.

2010 ◽  
Vol 54 (9) ◽  
pp. 3974-3977 ◽  
Author(s):  
Michelle M. Butler ◽  
John D. Williams ◽  
Norton P. Peet ◽  
Donald T. Moir ◽  
Rekha G. Panchal ◽  
...  

ABSTRACT Antimicrobial susceptibilities of 233 Gram-positive and 180 Gram-negative strains to two novel bis-indoles were evaluated. Both compounds were potent inhibitors of Gram-positive bacteria, with MIC90 values of 0.004 to 0.5 μg/ml. One bis-indole, MBX 1162, exhibited potent activity against all Gram-negative strains, with MIC90 values of 0.12 to 4 μg/ml, even against high-level-resistant pathogens, and compared favorably to all comparator antibiotics. The bis-indole compounds show promise for the treatment of multidrug-resistant clinical pathogens.


2005 ◽  
Vol 49 (7) ◽  
pp. 3034-3039 ◽  
Author(s):  
G. M. Eliopoulos ◽  
M. J. Ferraro ◽  
C. B. Wennersten ◽  
R. C. Moellering

ABSTRACT The comparative in vitro potency of XRP2868, a new oral semisynthetic streptogramin antibiotic, was evaluated against gram-positive bacteria. XRP2868 inhibited all staphylococci at ≤1 μg/ml and all nonpneumococcal streptococci at ≤0.25 μg/ml and was fourfold more potent than quinupristin-dalfopristin against Staphylococcus aureus and Enterococcus faecium.


2006 ◽  
Vol 50 (6) ◽  
pp. 2261-2264 ◽  
Author(s):  
Hee-Soo Park ◽  
Hyun-Joo Kim ◽  
Min-Jung Seol ◽  
Dong-Rack Choi ◽  
Eung-Chil Choi ◽  
...  

ABSTRACT DW-224a showed the most potent in vitro activity among the quinolone compounds tested against clinical isolates of gram-positive bacteria. Against gram-negative bacteria, DW-224a was slightly less active than the other fluoroquinolones. The in vivo activities of DW-224a against gram-positive bacteria were more potent than those of other quinolones.


2019 ◽  
Vol 64 (3) ◽  
Author(s):  
Ian Morrissey ◽  
Stephen Hawser ◽  
Sibylle H. Lob ◽  
James A. Karlowsky ◽  
Matteo Bassetti ◽  
...  

ABSTRACT Eravacycline is a novel, fully synthetic fluorocycline antibiotic being developed for the treatment of serious infections, including those caused by resistant Gram-positive pathogens. Here, we evaluated the in vitro activities of eravacycline and comparator antimicrobial agents against a recent global collection of frequently encountered clinical isolates of Gram-positive bacteria. The CLSI broth microdilution method was used to determine in vitro MIC data for isolates of Enterococcus spp. (n = 2,807), Staphylococcus spp. (n = 4,331), and Streptococcus spp. (n = 3,373) isolated primarily from respiratory, intra-abdominal, urinary, and skin specimens by clinical laboratories in 37 countries on three continents from 2013 to 2017. Susceptibilities were interpreted using both CLSI and EUCAST breakpoints. There were no substantive differences (a >1-doubling-dilution increase or decrease) in eravacycline MIC90 values for different species/organism groups over time or by region. Eravacycline showed MIC50 and MIC90 results of 0.06 and 0.12 μg/ml, respectively, when tested against Staphylococcus aureus, regardless of methicillin susceptibility. The MIC90 values of eravacycline for Staphylococcus epidermidis and Staphylococcus haemolyticus were equal (0.5 μg/ml). The eravacycline MIC90s for Enterococcus faecalis and Enterococcus faecium were 0.06 μg/ml and were within 1 doubling dilution regardless of the vancomycin susceptibility profile. Eravacycline exhibited MIC90 results of ≤0.06 μg/ml when tested against Streptococcus pneumoniae and beta-hemolytic and viridans group streptococcal isolates. In this surveillance study, eravacycline demonstrated potent in vitro activity against frequently isolated clinical isolates of Gram-positive bacteria (Enterococcus, Staphylococcus, and Streptococcus spp.), including isolates collected over a 5-year period (2013 to 2017), underscoring its potential benefit in the treatment of infections caused by common Gram-positive pathogens.


2019 ◽  
Vol 6 (Supplement_2) ◽  
pp. S310-S311 ◽  
Author(s):  
Olga Lomovskaya ◽  
Jill Lindley ◽  
Debora Rubio-Aparicio ◽  
Kirk J Nelson ◽  
Mariana Castanheira

Abstract Background QPX7728 (QPX) is a novel broad-spectrum boron-containing inhibitor of serine- and metallo-β-lactamases (MBLs). We evaluated the in vitro activity of QPX combined with several β-lactams against carbapenem-resistant AB (CRAB) and PSA clinical isolates with varying β-lactam resistance mechanisms. Methods A total of 503 CRAB (meropenem [MEM] MIC ≥8 µg/mL) and 762 PSA clinical isolates were tested by the reference broth microdilution method against β-lactams alone and combined with QPX (4 µg/mL and 8 µg/mL). PSA isolates were selected to represent the normal distribution of MEM, ceftazidime–avibactam (CAZ-AVI), and ceftolozane-tazobactam (TOL-TAZ) resistance according to 2017 surveillance data (representative panel). Additionally, 262 PSA isolates that were either nonsusceptible (NS) to MEM (MIC, ≥4 µg/mL) or to TOL-TAZ (MIC, ≥8 µg/mL), or resistant (R) to CAZ-AVI (MIC, ≥16 µg/mL) (challenge panel) were also tested. Within this 262 strain challenge set, 56 strains carried MBLs and the majority also had nonfunctional OprD. Results Against CRAB, QPX at 4 and 8 µg/mL increased the potency of all β-lactams tested. MEM-QPX was the most potent combination (table) displaying MIC50/MIC90 at 1/8 and 0.5/4 µg/mL with QPX at fixed 4 and 8 µg/mL, respectively. Susceptibility (S) to MEM was restored in >95% of strains. Against the 500 PSA from the representative panel, S for all QPX combinations was >90%. For the challenge panel, TOL-QPX and piperacillin (PIP)-QPX were the most potent combinations, restoring S in 76–77% of strains. TOL-QPX and MEM-QPX or cefepime (FEP)-QPX restored the MIC values to S rates when applying the CLSI breakpoint for the compound alone (comparison purposes only) in ~90% and ~75% of non-MBL-producing strains, respectively, vs. 60–70% for TOL-TAZ and CAZ-AVI. PIP-QPX reduce the MIC values to S values for PIP-TAZ in ~60% of MBL-producing strains vs. 20–30% and 3–7% for other QPX combinations and non-QPX tested combinations, respectively. Conclusion Combinations of QPX with various β-lactam antibiotics displayed potent activity against CRAB and resistant PSA isolates and warrant further investigation. Disclosures All authors: No reported disclosures.


1997 ◽  
Vol 41 (5) ◽  
pp. 1196-1202 ◽  
Author(s):  
T Schülin ◽  
C B Wennersten ◽  
R C Moellering ◽  
G M Eliopoulos

The comparative in vitro activity of RU 64004 (also known as HMR 3004), a new ketolide antibiotic, was tested by agar dilution against approximately 500 gram-positive organisms, including multiply resistant enterococci, streptococci, and staphylococci. All streptococci were inhibited by < or = 1 microg of RU 64004 per ml. The ketolide was more potent than other macrolides against erythromycin A-susceptible staphylococci and was generally more potent than clindamycin against erythromycin A-resistant strains susceptible to this agent. Clindamycin-resistant staphylococci (MIC, > 128 microg/ml) proved resistant to the ketolide, but some erythromycin A- and clindamycin-resistant enterococci remained susceptible to RU 64004.


1995 ◽  
Vol 39 (4) ◽  
pp. 850-853 ◽  
Author(s):  
G M Eliopoulos ◽  
C B Wennersten ◽  
G Cole ◽  
D Chu ◽  
D Pizzuti ◽  
...  

This study evaluated the in vitro activity of A-86719.1, a novel 2-pyridone antimicrobial agent. The drug inhibited all tested members of the family Enterobacteriaceae at < or = 0.5 microgram/ml and all tested Pseudomonas aeruginosa, Burkholderia (Pseudomonas) cepacia, and Xanthomonas maltophilia strains at < or = 2 micrograms/ml. All but two strains of gram-positive bacteria were inhibited by < or = 1 microgram of the new drug per ml, including isolates highly resistant to ciprofloxacin.


1997 ◽  
Vol 41 (5) ◽  
pp. 1156-1157 ◽  
Author(s):  
O Uzun ◽  
S Kocagöz ◽  
Y Cetinkaya ◽  
S Arikan ◽  
S Unal

The in vitro activity of LY303366, a new echinocandin derivative, was evaluated with 191 yeast isolates by a broth microdilution method. The MICs at which 50% of the isolates were inhibited were 0.125 microg/ml for Candida albicans and C. tropicalis, 0.25 microg/ml for C. krusei, C. kefyr, and C. glabrata, and 2.0 microg/ml for C. parapsilosis.


Sign in / Sign up

Export Citation Format

Share Document