scholarly journals Antimicrobial activity of DU-6681a, a parent compound of novel oral carbapenem DZ-2640.

1997 ◽  
Vol 41 (6) ◽  
pp. 1260-1268 ◽  
Author(s):  
M Tanaka ◽  
M Hohmura ◽  
T Nishi ◽  
K Sato ◽  
I Hayakawa

The in vitro antibacterial activity of DU-6681a, a parent compound of DZ-2640, against gram-positive and -negative bacteria was compared with those of penems and cephalosporins currently available. MICs at which 90% of the isolates are inhibited (MIC90s) of the compound for clinical isolates of methicillin-susceptible and -resistant Staphylococcus aureus and Staphylococcus epidermidis, including methicillin-susceptible and -resistant strains, were 0.10, 25, and 12.5 microg/ml, respectively. DU-6681a inhibited the growth of all strains of Streptococcus pyogenes and of penicillin-susceptible and -insusceptible Streptococcus pneumoniae at 0.006, 0.025, and 0.20 microg/ml, respectively, and MIC90s of the compound were 6.25 and >100 microg/ml for Enterococcus faecalis and Enterococcus faecium, respectively. MIC90s of DU-6681a were 0.20, 0.10, and 0.025 microg/ml for Haemophilus influenzae, Moraxella catarrhalis, and Neisseria gonorrhoeae, respectively. For Pseudomonas aeruginosa, the MIC50 and MIC90 of DU-6681a were 25 and 50 microg/ml, respectively. DU-6681a activity was not affected by different media, varied inoculum size (10(4) to 10(7) CFU), or the addition of human serum but was decreased under acidic conditions against gram-negative bacteria, under alkaline conditions against gram-positive bacteria, and in human urine, as was the activity of the other antibiotics tested. The frequency of spontaneous resistance to DU-6681a was less than or equal to those of the reference compounds. Time-kill curve studies demonstrated the bactericidal action of DU-6681a against S. aureus, S. pneumoniae, Escherichia coli, and H. influenzae.

2003 ◽  
Vol 47 (3) ◽  
pp. 923-931 ◽  
Author(s):  
Takaji Fujimura ◽  
Yoshinori Yamano ◽  
Isamu Yoshida ◽  
Jingoro Shimada ◽  
Shogo Kuwahara

ABSTRACT The in vitro antibacterial activity of S-3578, a new parenteral cephalosporin, against clinical isolates was evaluated. The MICs of the drug at which 90% of the isolates were inhibited were 4 μg/ml for methicillin-resistant Staphylococcus aureus (MRSA) and 2 μg/ml for methicillin-resistant Staphylococcus epidermidis, which were fourfold higher than and equal to those of vancomycin, respectively. The anti-MRSA activity of S-3578 was considered to be due to its high affinity for penicillin-binding protein 2a (50% inhibitory concentration, 4.5 μg/ml). In time-kill studies with 10 strains each of MRSA and methicillin-susceptible S. aureus, S-3578 caused more than a 4-log10 decrease of viable cells on the average at twice the MIC after 24 h of exposure, indicating that it had potent bactericidal activity. Furthermore, in population analysis of MRSA strains with heterogeneous or homogeneous resistance to imipenem, no colonies emerged from about 109 cells on agar plates containing twice the MIC of S-3578, suggesting the low frequency of emergence of S-3578-resistant strains from MRSA. S-3578 was also highly active against penicillin-resistant Streptococcus pneumoniae (PRSP), with a MIC90 of 1 μg/ml, which was comparable to that of ceftriaxone. S-3578 also had antibacterial activity against a variety of gram-negative bacteria including Pseudomonas aeruginosa, though its activity was not superior to that of cefepime. In conclusion, S-3578 exhibited a broad antibacterial spectrum and, particularly, had excellent activity against gram-positive bacteria including methicillin-resistant staphylococci and PRSP. Thus, S-3578 was considered to be worthy of further evaluation.


2000 ◽  
Vol 44 (8) ◽  
pp. 2217-2221 ◽  
Author(s):  
Jennifer S. Daly ◽  
Theodore J. Giehl ◽  
Neal C. Brown ◽  
Chengxin Zhi ◽  
George E. Wright ◽  
...  

ABSTRACT The 6-anilinouracils are novel dGTP analogs that selectively inhibit the replication-specific DNA polymerase III of gram-positive eubacteria. Two specific derivatives, IMAU (6-[3′-iodo-4′-methylanilino]uracil) and EMAU (6-[3′-ethyl-4′-methylanilino]uracil), were substituted with either a hydroxybutyl (HB) or a methoxybutyl (MB) group at their N3 positions to produce four agents: HB-EMAU, MB-EMAU, HB-IMAU, and MB-IMAU. These four new agents inhibited Staphylococcus aureus, coagulase-negative staphylococci, Enterococcus faecalis, and Enterococcus faecium. Time-kill assays and broth dilution testing confirmed bactericidal activity. These anilinouracil derivatives represent a novel class of antimicrobials with promising activities against gram-positive bacteria that are resistant to currently available agents, validating replication-specific DNA polymerase III as a new target for antimicrobial development.


2004 ◽  
Vol 48 (8) ◽  
pp. 2831-2837 ◽  
Author(s):  
Mizuyo Kurazono ◽  
Takashi Ida ◽  
Keiko Yamada ◽  
Yoko Hirai ◽  
Takahisa Maruyama ◽  
...  

ABSTRACT ME1036, formerly CP5609, is a novel parenteral carbapenem with a 7-acylated imidazo[5,1-b]thiazole-2-yl group directly attached to the carbapenem moiety of the C-2 position. The present study evaluated the in vitro activities of ME1036 against clinical isolates of gram-positive and gram-negative bacteria. ME1036 displayed broad activity against aerobic gram-positive and gram-negative bacteria. Unlike other marketed β-lactam antibiotics, ME1036 maintained excellent activity against multiple-drug-resistant gram-positive bacteria, such as methicillin-resistant staphylococci and penicillin-resistant Streptococcus pneumoniae (PRSP). The MICs of this compound at which 90% of isolates were inhibited were 2 μg/ml for methicillin-resistant Staphylococcus aureus (MRSA), 2 μg/ml for methicillin-resistant coagulase-negative staphylococci, and 0.031 μg/ml for PRSP. In time-kill studies with six strains of MRSA, ME1036 at four times the MIC caused a time-dependent decrease in the numbers of viable MRSA cells. The activity of ME1036 against MRSA is related to its high affinity for penicillin-binding protein 2a, for which the 50% inhibitory concentration of ME1036 was approximately 300-fold lower than that of imipenem. In conclusion, ME1036 demonstrated a broad antibacterial spectrum and high levels of activity in vitro against staphylococci, including β-lactam-resistant strains.


2001 ◽  
Vol 56 (1-2) ◽  
pp. 31-34 ◽  
Author(s):  
Martin Johansson ◽  
Olov Sterner ◽  
Harald Labischinski ◽  
Timm Anke

Abstract Coprinol, a new antibacterial cuparane, was isolated from fermentations of a Coprinus sp. Its biological activities were investigated and its structure was elucidated by spectroscopic methods. The new antibiotic exhibited activitiy against multidrug-resistant Gram -positive bacteria in vitro. Two derivatives were synthesized and their activities compared to the parent compound.


2008 ◽  
Vol 52 (7) ◽  
pp. 2647-2652 ◽  
Author(s):  
Kevin M. Krause ◽  
Marika Renelli ◽  
Stacey Difuntorum ◽  
Terry X. Wu ◽  
Dmitri V. Debabov ◽  
...  

ABSTRACT The in vitro activity of telavancin was tested against 743 predominantly antimicrobial-resistant, gram-positive isolates. Telavancin was highly active against methicillin-resistant staphylococci (MIC90, 0.5 to 1 μg/ml), streptococci (all MICs, ≤0.12 μg/ml), and VanB-type enterococci (all MICs, ≤2 μg/ml). Time-kill studies demonstrated the potent bactericidal activity of telavancin.


2008 ◽  
Vol 52 (5) ◽  
pp. 1697-1702 ◽  
Author(s):  
S. Grayo ◽  
O. Join-Lambert ◽  
M. C. Desroches ◽  
A. Le Monnier

ABSTRACT Listeria monocytogenes is a facultative intracellular bacterium that causes severe infections associated with a high mortality rate. Moxifloxacin presents extended activity against gram-positive bacteria and has recently been suggested to be a potential alternative in the treatment of listeriosis. We evaluated the in vitro efficacy of moxifloxacin against L. monocytogenes using a combination of epidemiological and experimental approaches. The median MIC of moxifloxacin for a large collection of L. monocytogenes strains of various origins (human, food, and environment) was 0.5 μg/ml (MIC range, 0.064 to 1 μg/ml). No differences were observed, irrespective of the origin of the strains. Moreover, no cross-resistance with fluoroquinolones was detected in strains that have been reported to be resistant to ciprofloxacin. The in vitro activities of moxifloxacin and amoxicillin were compared by time-kill curve and inhibition of intracellular growth experiments by using a model of bone marrow-derived mouse macrophages infected by L. monocytogenes EGDe. Both moxifloxacin and amoxicillin were bactericidal in broth against extracellular forms of L. monocytogenes. However, moxifloxacin acted much more rapidly, beginning to exert its effects in the first 3 h and achieving complete broth sterilization within 24 h of incubation. Moxifloxacin has a rapid bactericidal effect against intracellular reservoirs of bacteria, whereas amoxicillin is only bacteriostatic and appears to prevent cellular lysis and the subsequent bacterial spreading to adjacent cells. No resistant bacteria were selected during the in vitro experiments. Taken together, our results suggest that moxifloxacin is an interesting alternative to the reference treatment, combining rapid and bactericidal activity, even against intracellular bacteria.


2008 ◽  
Vol 52 (11) ◽  
pp. 3875-3882 ◽  
Author(s):  
Cong-Ran Li ◽  
Xin-Yi Yang ◽  
Ren-Hui Lou ◽  
Wei-Xin Zhang ◽  
Yue-Ming Wang ◽  
...  

ABSTRACT Vertilmicin is a new semisynthetic aminoglycoside with a structure similar to that of netilmicin except for a methyl group at the C-6′ position. In the present study, the in vitro antibacterial activity of vertilmicin was studied, and its susceptibility to modifications by the recombinant aminoglycoside bifunctional modifying enzyme AAC(6′)-APH(2″) was compared with those of verdamicin and netilmicin. A total of 1,185 clinical isolates collected from hospitals in Beijing between 2000 and 2001 were subjected to the in vitro antibacterial activity evaluations, including MIC, minimum bactericidal concentration (MBC), and time-kill curve tests. The MICs were evaluated in non-gentamicin-resistant (gentamicin-susceptible and gentamicin-intermediate) strains and gentamicin-resistant strains, respectively. For most of the non-gentamicin-resistant bacteria (except for the isolates of Pseudomonas spp.), the MIC90s of vertilmicin were in the range of 0.5 to 8 μg/ml, comparable to those of the reference aminoglycosides. For the gentamicin-resistant isolates, the three semisynthetic aminoglycosides (vertilmicin, netilmicin, and amikacin) demonstrated low MIC50s and/or MIC90s, as well as high percent susceptibility values. Among the study drugs, vertilmicin showed the lowest MIC90s, 16 μg/ml, for the gram-positive gentamicin-resistant isolates of Staphylococcus aureus and Staphylococcus epidermidis. Meanwhile, vertilmicin was a potent bactericidal agent, with MBC/MIC ratios in the range of 1 to 2 for Escherichia coli, Klebsiella pneumoniae, and S. aureus and 1 to 4 for S. epidermidis. The time-kill curve determination further demonstrated that this effect was rapid and concentration dependent. In evaluations of susceptibility to modifications by the recombinant AAC(6′)-APH(2″) with maximum rate of metabolism/Km measurements, vertilmicin exhibited susceptibilities to both acetylation and phosphorylation lower than those of netilmicin and verdamicin.


Antibiotics ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 36 ◽  
Author(s):  
Andrea Vila Domínguez ◽  
Rafael Ayerbe Algaba ◽  
Andrea Miró Canturri ◽  
Ángel Rodríguez Villodres ◽  
Younes Smani

Due to the emergence of antimicrobial resistance, new alternative therapies are needed. Silver was used to treat bacterial infections since antiquity due to its known antimicrobial properties. Here, we aimed to evaluate the in vitro activity of colloidal silver (CS) against multidrug-resistant (MDR) Gram-negative and Gram-positive bacteria. A total of 270 strains (Acinetobacter baumannii (n = 45), Pseudomonas aeruginosa (n = 25), Escherichia coli (n = 79), Klebsiella pneumoniae (n = 58)], Staphylococcus aureus (n = 34), Staphylococcus epidermidis (n = 14), and Enterococcus species (n = 15)) were used. The minimal inhibitory concentration (MIC) of CS was determined for all strains by using microdilution assay, and time–kill curve assays of representative reference and MDR strains of these bacteria were performed. Membrane permeation and bacterial reactive oxygen species (ROS) production were determined in presence of CS. CS MIC90 was 4–8 mg/L for all strains. CS was bactericidal, during 24 h, at 1× and 2× MIC against Gram-negative bacteria, and at 2× MIC against Gram-positive bacteria, and it did not affect their membrane permeabilization. Furthermore, we found that CS significantly increased the ROS production in Gram-negative with respect to Gram-positive bacteria at 24 h of incubation. Altogether, these results suggest that CS could be an effective treatment for infections caused by MDR Gram-negative and Gram-positive bacteria.


Sign in / Sign up

Export Citation Format

Share Document