scholarly journals Type II Topoisomerase Mutations in Fluoroquinolone-Resistant Clinical Strains of Pseudomonas aeruginosa Isolated in 1998 and 1999: Role of Target Enzyme in Mechanism of Fluoroquinolone Resistance

2001 ◽  
Vol 45 (8) ◽  
pp. 2263-2268 ◽  
Author(s):  
Takaaki Akasaka ◽  
Mayumi Tanaka ◽  
Akihito Yamaguchi ◽  
Kenichi Sato

ABSTRACT The major mechanism of resistance to fluoroquinolones forPseudomonas aeruginosa is the modification of type II topoisomerases (DNA gyrase and topoisomerase IV). We examined the mutations in quinolone-resistance-determining regions (QRDR) ofgyrA, gyrB, parC, and parE genes of recent clinical isolates. There were 150 isolates with reduced susceptibilities to levofloxacin and 127 with reduced susceptibilities to ciprofloxacin among 513 isolates collected during 1998 and 1999 in Japan. Sequencing results predicted replacement of an amino acid in the QRDR of DNA gyrase (GyrA or GyrB) for 124 of the 150 strains (82.7%); among these, 89 isolates possessed mutations in parC orparE which lead to amino acid changes. Substitutions of both Ile for Thr-83 in GyrA and Leu for Ser-87 in ParC were the principal changes, being detected in 48 strains. These replacements were obviously associated with reduced susceptibilities to levofloxacin, ciprofloxacin, and sparfloxacin; however, sitafloxacin showed high activity against isolates with these replacements. We purified GyrA (The-83 to Ile) and ParC (Ser-87 to Leu) by site-directed mutagenesis and compared the inhibitory activities of the fluoroquinolones. Sitafloxacin showed the most potent inhibitory activities against both altered topoisomerases among the fluoroquinolones tested. These results indicated that, compared with other available quinolones, sitafloxacin maintained higher activity against recent clinical isolates with multiple mutations ingyrA and parC, which can be explained by the high inhibitory activities of sitafloxacin against both mutated enzymes.

2005 ◽  
Vol 49 (6) ◽  
pp. 2479-2486 ◽  
Author(s):  
Nataliya Korzheva ◽  
Todd A. Davies ◽  
Raul Goldschmidt

ABSTRACT Resistance of Streptococcus pneumoniae to fluoroquinolones is caused predominantly by amino acid substitutions at positions Ser79 of ParC and Ser81 of GyrA to either Phe or Tyr encoded in the quinolone resistance-determining regions of the parC topoisomerase IV and gyrA DNA gyrase genes. Analysis of highly resistant clinical isolates identified novel second-step substitutions, Ser79Leu (ParC) and Ser81Ile (GyrA). To determine contributions of these new mutations to fluoroquinolone resistance either alone or in combination with other Ser79/81 alleles, the substitutions Ser79Leu/Phe/Tyr in ParC and Ser81Ile/Phe/Tyr in GyrA were introduced into the R6 background, resulting in 15 isogenic strains. Their level of fluoroquinolone resistance was determined by susceptibility testing for ciprofloxacin, levofloxacin, moxifloxacin, gatifloxacin, gemifloxacin, garenoxacin, and norfloxacin. Leu79 and Ile81 alone as well as 79/81Phe/Tyr substitutions did not contribute significantly to resistance, with fluoroquinolone MICs increasing two- to fourfold compared to wild type for all agents tested. Fluoroquinolone MICs for double transformants ParC Ser79Phe/Tyr/Leu-GyrA Ser81Phe/Tyr were uniformly increased by 8- to 64-fold regardless of pairs of amino acid substitutions. However, combinations including Ile81 conferred two- to fourfold-higher levels of resistance than did combinations including any other Ser81 GyrA substitution, thus demonstrating the differential effects of diverse amino acid substitutions at particular hotspots on fluoroquinolone MICs.


1999 ◽  
Vol 43 (4) ◽  
pp. 954-956 ◽  
Author(s):  
Cécile M. Bebear ◽  
Joel Renaudin ◽  
Alain Charron ◽  
Hélène Renaudin ◽  
Bertille de Barbeyrac ◽  
...  

ABSTRACT Five clinical isolates of Mycoplasma hominis from three different patients were examined for resistance to fluoroquinolones; some of these isolates were probably identical. All five isolates harbored amino acid substitutions in the quinolone resistance-determining regions of both DNA gyrase (GyrA) and topoisomerase IV (ParC or ParE). Furthermore, the novobiocin MIC for three isolates showed a significant increase. This is the first characterization of fluoroquinolone-resistant clinical mycoplasma isolates from humans.


1998 ◽  
Vol 42 (10) ◽  
pp. 2678-2681 ◽  
Author(s):  
Masaya Takei ◽  
Hideyuki Fukuda ◽  
Tokutaro Yasue ◽  
Masaki Hosaka ◽  
Yasuo Oomori

ABSTRACT We determined the inhibitory activities of gatifloxacin againstStaphylococcus aureus topoisomerase IV,Escherichia coli DNA gyrase, and HeLa cell topoisomerase II and compared them with those of several quinolones. The inhibitory activities of quinolones against these type II topoisomerases significantly correlated with their antibacterial activities or cytotoxicities (correlation coefficient [r] = 0.926 forS. aureus, r = 0.972 for E. coli, and r = 0.648 for HeLa cells). Gatifloxacin possessed potent inhibitory activities against bacterial type II topoisomerases (50% inhibitory concentration [IC50] = 13.8 μg/ml for S. aureustopoisomerase IV; IC50 = 0.109 μg/ml for E. coli DNA gyrase) but the lowest activity against HeLa cell topoisomerase II (IC50 = 265 μg/ml) among the quinolones tested. There was also a significant correlation between the inhibitory activities of quinolones against S. aureustopoisomerase IV and those against E. coli DNA gyrase (r = 0.969). However, the inhibitory activity against HeLa cell topoisomerase II did not correlate with that against either bacterial enzyme. The IC50 of gatifloxacin for HeLa cell topoisomerase II was 19 and was more than 2,400 times higher than that for S. aureus topoisomerase IV and that for E. coli DNA gyrase. These ratios were higher than those for other quinolones, indicating that gatifloxacin possesses a higher selectivity for bacterial type II topoisomerases.


2003 ◽  
Vol 47 (1) ◽  
pp. 77-81 ◽  
Author(s):  
Ryuta Kishii ◽  
Masaya Takei ◽  
Hideyuki Fukuda ◽  
Katsuhiko Hayashi ◽  
Masaki Hosaka

ABSTRACT The inhibitory activities (50% inhibitory concentrations [IC50s]) of gatifloxacin and other quinolones against both DNA gyrase and topoisomerase IV of the wild-type Streptococcus pneumoniae IID553 were determined. The IC50s of 10 compounds ranged from 4.28 to 582 μg/ml against DNA gyrase and from 1.90 to 35.2 μg/ml against topoisomerase IV. The inhibitory activity against DNA gyrase was more varied than that against topoisomerase IV among fluoroquinolones. The IC50s for DNA gyrase of the 8-methoxy quinolones gatifloxacin and AM-1147 were approximately seven times lower than those of their 8-H counterparts AM-1121 and ciprofloxacin, whereas the IC50s for topoisomerase IV were 1.5 times lower. Moreover, the IC50 ratios (IC50 for DNA gyrase/IC50 for topoisomerase IV) of gatifloxacin, AM-1147, and moxifloxacin, which possess 8-methoxy groups, were almost the same. The 8-methoxy quinolones showed higher antibacterial activity and less mutant selectivity against IID553 than their 8-H counterparts. These results suggest that the 8-methoxy group enhances both target inhibition, especially for DNA gyrase, leading to potent antipneumococcal activity and dual inhibition against both DNA gyrase and topoisomerase IV in the bacterial cell.


2004 ◽  
Vol 48 (12) ◽  
pp. 4495-4504 ◽  
Author(s):  
Thomas Gruger ◽  
John L. Nitiss ◽  
Anthony Maxwell ◽  
E. Lynn Zechiedrich ◽  
Peter Heisig ◽  
...  

ABSTRACT Fluoroquinolones are broad-spectrum antimicrobial agents that target type II topoisomerases. Many fluoroquinolones are highly specific for bacterial type II topoisomerases and act against both DNA gyrase and topoisomerase IV. In Escherichia coli, mutations causing quinolone resistance are often found in the gene that encodes the A subunit of DNA gyrase. One common site for resistance-conferring mutations alters Ser83, and mutations to Leu or Trp result in high levels of resistance to fluoroquinolones. In the present study we demonstrate that the mutation of Ser83 to Trp in DNA gyrase (GyrS83W) also results in sensitivity to agents that are potent inhibitors of eukaryotic topoisomerase II but that are normally inactive against prokaryotic enzymes. Epipodophyllotoxins, such as etoposide, teniposide and amino-azatoxin, inhibited the DNA supercoiling activity of GyrS83W, and the enzyme caused elevated levels of DNA cleavage in the presence of these agents. The DNA sequence preference for GyrS83W-induced cleavage sites in the presence of etoposide was similar to that seen with eukaryotic type II topoisomerases. Introduction of the GyrS83W mutation in E. coli strain RFM443-242 by site-directed mutagenesis sensitized it to epipodophyllotoxins and amino-azatoxin. Our results demonstrate that sensitivity to agents that target topoisomerase II is conserved between prokaryotic and eukaryotic enzymes, suggesting that drug interaction domains are also well conserved and likely occur in domains important for the biochemical activities of the enzymes.


1998 ◽  
Vol 42 (12) ◽  
pp. 3293-3295 ◽  
Author(s):  
Zhiyu Li ◽  
Takashi Deguchi ◽  
Mitsuru Yasuda ◽  
Takeshi Kawamura ◽  
Emiko Kanematsu ◽  
...  

ABSTRACT We examined 22 clinical isolates of Staphylococcus epidermidis to analyze the association of alterations in GyrA and ParC with fluoroquinolone resistance. The simultaneous presence of GyrA and ParC alterations was associated with a high level of fluoroquinolone resistance in the clinical isolates of S. epidermidis.


1997 ◽  
Vol 41 (3) ◽  
pp. 699-701 ◽  
Author(s):  
T Deguchi ◽  
A Fukuoka ◽  
M Yasuda ◽  
M Nakano ◽  
S Ozeki ◽  
...  

We determined a partial sequence of the Klebsiella pneumoniae parC gene, including the region analogous to the quinolone resistance-determining region of the Escherichia coli gyrA gene, and examined 26 clinical strains of K. pneumoniae for an association of alterations in GyrA and ParC with susceptibilities to quinolones. The study suggests that in K. pneumoniae DNA gyrase is a primary target of quinolones and that ParC alterations play a complementary role in the development of higher-level fluoroquinolone resistance.


2000 ◽  
Vol 44 (11) ◽  
pp. 3049-3054 ◽  
Author(s):  
Darrin J. Bast ◽  
Donald E. Low ◽  
Carla L. Duncan ◽  
Laurie Kilburn ◽  
Lionel A. Mandell ◽  
...  

ABSTRACT We report on amino acid substitutions in the quinolone resistance-determining region of type II topisomerases and the prevalence of reserpine-inhibited efflux for 70 clinical isolates ofS. pneumoniae for which the ciprofloxacin MIC is ≥4 μg/ml and 28 isolates for which the ciprofloxacin MIC is ≤2 μg/ml. The amino acid substitutions in ParC conferring low-level resistance (MICs, 4 to 8 μg/ml) included Phe, Tyr, and Ala for Ser-79; Asn, Ala, Gly, Tyr, and Val for Asp-83; Asn for Asp-78; and Pro for Ala-115. Isolates with intermediate-level (MICs, 16 to 32 μg/ml) and high-level (MICs, 64 μg/ml) resistance harbored substitutions of Phe and Tyr for Ser-79 or Asn and Ala for Asp-83 in ParC and an additional substitution in GyrA which included either Glu-85-Lys (Gly) or Ser-81-Phe (Tyr). Glu-85-Lys was found exclusively in isolates with high-level resistance. Efflux contributed primarily to low-level resistance in isolates with or without an amino acid substitution in ParC. The impact of amino acid substitutions in ParE was minimal, and no substitutions in GyrB were identified.


Sign in / Sign up

Export Citation Format

Share Document