scholarly journals Antibacterial Spectrum of a Novel Des-Fluoro(6) Quinolone, BMS-284756

2000 ◽  
Vol 44 (12) ◽  
pp. 3351-3356 ◽  
Author(s):  
Joan C. Fung-Tomc ◽  
Beatrice Minassian ◽  
Benjamin Kolek ◽  
Elizabeth Huczko ◽  
Lauren Aleksunes ◽  
...  

ABSTRACT The in vitro spectrum of a novel des-fluoro(6) quinolone, BMS-284756, was compared with those of five fluoroquinolones (trovafloxacin, moxifloxacin, levofloxacin, ofloxacin, and ciprofloxacin). BMS-284756 was among the most active and often was the most active quinolone against staphylococci (including methicillin-resistant strains), streptococci, pneumococci (including ciprofloxacin-nonsusceptible and penicillin-resistant strains), andEnterococcus faecalis. BMS-284756 inhibited ≈60 to ≈70% of the Enterococcus faecium (including vancomycin-resistant) strains and 90 to 100% of theEnterobacteriaceae strains and gastroenteric bacillary pathogens at the anticipated MIC susceptible breakpoint (≤4 μg/ml). Against the nonfermenters, BMS-284756 inhibited 90 to 100% ofPseudomonas fluorescens, Pseudomonas stutzeri,Stenotrophomonas maltophilia, Flavobacteriumspp., and Acinetobacter spp. and 72% ofPseudomonas aeruginosa strains at 4 μg/ml. Against anaerobic bacteria, BMS-284756 was among the most active, inhibiting essentially all strains tested. It had very low MICs against the fastidious and atypical microbial species, in particular against mycoplasmas or ureaplasmas, Borrelia burgdorferi, chlamydia, and gonococci. These results indicate that with its broad antibacterial spectrum, BMS-284756 should be evaluated clinically for the treatment of community and nosocomial infections.

Author(s):  
Karlynne Freire Mendonça ◽  
José Klauber Roger Carneiro ◽  
Maria Auxiliadora Silva Oliveira

Objetivos: avaliar a atividade antimicrobiana em extrato aquoso, hidroalcoólico e alcoólico das folhas de espécies da família Lamiaceae frente a bactérias de interesse. Método: Foram escolhidas quatro espécies: Ocimum gratissimum, Plectranthus amboinicus, Mentha arvensis e Plectranthus barbatus. A partir das folhas foram confeccionados os extratos aquoso, hidroalcoólico e alcoólico nas concentrações 100mg/mL, 50mg/mL e 25mg/mL. Foram selecionadas as bactérias Streptococcus pyogenes, Enterococcus faecalis, Staphylococcus aureus e Pseudomonas aeruginosa para os ensaios de antibiose em Ágar Mueller-Hinton. Resultados: P. barbatus, em seu extrato hidroalcoólico mostrou ativo nas três concentrações para bactéria S. aureus, e ainda foi ativo para P. aeruginosa, demonstrando no extrato alcoólico atividade frente as bactérias. Para M. arvensis e P. amboinicus, seus extratos hidroalcoólico e alcoólico apresentaram atividade para S. aureus. Conclusão: Sugere-se que as espécies em questão apresentem boa atividade antimicrobiana, sendo necessária a realização de mais estudos para melhor entender esse mecanismo.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Agata Cieślik-Bielecka ◽  
Tadeusz Bold ◽  
Grzegorz Ziółkowski ◽  
Marcin Pierchała ◽  
Aleksandra Królikowska ◽  
...  

The aim of the study was to investigate the leukocyte- and platelet-rich plasma (L-PRP) antimicrobial activity. The studied sample comprised 20 healthy males. The L-PRP gel, liquid L-PRP, and thrombin samples were testedin vitrofor their antibacterial properties against selected bacterial strains using the Kirby-Bauer disc diffusion method. Two types of thrombin were used (autologous and bovine). Zones of inhibition produced by L-PRP ranged between 6 and 18 mm in diameter. L-PRP inhibited the growth ofStaphylococcus aureus(MRSA and MSSA strains) and was also active againstEnterococcus faecalisandPseudomonas aeruginosa. There was no activity againstEscherichia coliandKlebsiella pneumoniae. The statistically significant increase of L-PRP antimicrobial effect was noted with the use of major volume of thrombin as an activator. Additionally, in groups where a bovine thrombin mixture was added to L-PRP the zones of inhibition concerning MRSA,Enterococcus faecalis, andPseudomonas aeruginosawere larger than in the groups with autologous thrombin. Based on the conducted studies, it can be determined that L-PRP can evokein vitroantimicrobial effects and might be used to treat selected infections in the clinical field. The major volume of thrombin as an activator increases the strength of the L-PRP antimicrobial effect.


2004 ◽  
Vol 48 (3) ◽  
pp. 739-746 ◽  
Author(s):  
Peter J. Petersen ◽  
T. Z. Wang ◽  
Russell G. Dushin ◽  
Patricia A. Bradford

ABSTRACT AC98-6446 is a novel semisynthetic cyclic glycopeptide antibiotic related to the natural product mannopeptimycin α (AC98-1). In the present study the activity of AC98-6446 was evaluated against a variety of recent clinical gram-positive pathogens including multiply resistant strains. AC98-6446 demonstrated similar potent activities against methicillin-susceptible and methicillin-resistant staphylococci and glycopeptide-intermediate staphylococcal isolates (MICs at which 90% of isolates are inhibited [MIC90s], 0.03 to 0.06 μg/ml). AC98-6446 also demonstrated good activities against both vancomycin-resistant and -susceptible strains of enterococci (MIC90s, 0.12 and 0.25 μg/ml, respectively) as well as against streptococcal strains (MIC90s, ≤ 0.008 to 0.03 μg/ml). AC98-6446 demonstrated bactericidal activity in terms of the reduction in the viable counts (>3 log10 CFU/ml) of staphylococcal and streptococcal isolates and a marked decrease in the viable counts of most enterococcal strains (from 0.2 to 2.5 log10 CFU/ml). Unlike vancomycin, which demonstrates time-dependent killing, AC98-6446 demonstrated concentration-dependent killing. The potent activity, novel structure, and bactericidal activity demonstrated by AC98-6446 make it an attractive candidate for further development.


2016 ◽  
Vol 11 (31) ◽  
pp. 113-122
Author(s):  
Carla Franco Porto Belmont Souza ◽  
Luiz Eduardo Souza da Silva Irineu ◽  
Renan Silva De Souza ◽  
Renato da Silva Teixeira ◽  
Ivina Sanches Pereira ◽  
...  

A resistência microbiana tem se mostrado um problema de proporções mundiais, causando estado de morbidade e mortalidade em diversos pacientes. Em vista disso, tem crescido a busca por métodos alternativos naturais de profilaxia. A investigação clínica sugere que o Extrato de Cranberry está entre as melhores propostas de prevenção natural. O Cranberry (Vaccinium macrocarpon) é um fruto que tem crescido comercialmente pelo sabor e propriedades benéficas à saúde. Dentre as formas comercializadas estão: o suco, o chá e as cápsulas contendo o extrato seco. A ação desta planta está relacionada ao tratamento de doenças do trato urinário, por possuir substâncias que inibem a adesão bacteriana ao epitélio do trato urinário, dificultando sua proliferação e reprodução. Dentre todas as infecções relacionadas à assistência a saúde, a Infecção do Trato Urinário é a mais frequentemente associada a procedimentos invasivos. Se não for tratada, pode resultar em complicações como pielonefrite aguda, bacteremia e pionefrose. Portanto, cranberry pode ser uma nova alternativa para o combate das infecções uroepiteliais, por ser um produto natural de preço acessível, e com formas de comercialização diversificada, ao contrário dos antimicrobianos convencionais, que por sua vez são caros e podem acabar causando resistência nos micro-organismos. Este trabalho teve como objetivo avaliar in vitro a atividade antimicrobiana do extrato de Cranberry, adquirido em farmácia de manipulação, sobre 8 micro-organismos isolados de infecções urinárias. As cepas utilizadas, adquiridas da coleção da FIOCRUZ, foram: Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, Proteus mirabilis, Serratia marscecens, Staphylococcus aureus, Enterococcus faecalis e Enterococcus faecium. No estudo, foram utilizados o caldo Mueller Hinton (MH), Extrato de Cranberry e as bactérias patogênicas. O ensaio foi realizado em triplicata, com o uso de um controle de crescimento dos micro-organismos e o experimento para avaliação do crescimento bacteriano na presença do extrato. A turbidez foi medida com o auxílio de um espectrofotômetro, no comprimento de onda de 600 nm, antes e após 24 horas de incubação à 37 ºC. O procedimento forneceu a Densidade Ótica, do qual possibilitou a identificação da inibição microbiana. Para análise estatística foi utilizado o Teste t de Student. O Extrato de Cranberry apresentou atividade antimicrobiana sobre as bactérias Staphylococcus aureus, Klebsiella pneumoniae, Escherichia coli, Serratia marscecens e Enterococcus faecalis (p < 0,05), confirmando seu efeito benéfico em infecções urinárias. No entanto, não teve efeito inibitório significativo sobre Pseudomonas aeruginosa, Proteus mirabilis e Enterococcus faecium (p > 0,05).


2006 ◽  
Vol 55 (3) ◽  
pp. 231-236 ◽  
Author(s):  
Anastasia Katsandri ◽  
Athina Avlamis ◽  
Angeliki Pantazatou ◽  
Georgios L. Petrikkos ◽  
Nicholas J. Legakis ◽  
...  

1997 ◽  
Vol 41 (10) ◽  
pp. 2165-2172 ◽  
Author(s):  
F Biavasco ◽  
C Vignaroli ◽  
R Lupidi ◽  
E Manso ◽  
B Facinelli ◽  
...  

LY333328 is a semisynthetic N-alkyl derivative of LY264826, a naturally occurring structural analog of vancomycin. LY333328 was evaluated for its in vitro inhibitory and bactericidal activities in comparison with those of the two currently available glycopeptides (vancomycin and teicoplanin). Glycopeptide-susceptible test strains included a total of 311 isolates (most of clinical origin) from the genera Staphylococcus, Enterococcus, Streptococcus, Aerococcus, Gemella, Lactococcus, Listeria, Corynebacterium, and Clostridium. Test strains resistant or intermediate to vancomycin and/or teicoplanin included 56 clinical isolates of Enterococcus (of the VanA, VanB, and VanC phenotypes) and 32 clinical isolates of Staphylococcus (S. haemolyticus, S. epidermidis, and S. aureus), 31 strains of gram-positive genera outside the spectrum of activity of vancomycin (Leuconostoc, Pediococcus, Lactobacillus, and Erysipelothrix), and laboratory-derived organisms obtained after exposure of susceptible Staphylococcus isolates to teicoplanin (6 strains) or laboratory-derived organisms with resistance determinants received from VanA enterococci (2 Enterococcus and 25 Listeria transconjugants). LY333328 was highly active against staphylococci, enterococci, and listeriae (whether they were clinical or laboratory-derived strains) resistant to the currently available glycopeptides. In particular, the MICs of LY333328 did not vary substantially between teicoplanin-susceptible and teicoplanin-resistant staphylococci and between vancomycin-susceptible and vancomycin-resistant enterococci. LY333328 demonstrated fairly good inhibitory activity even against most strains of Leuconostoc, Pediococcus, and Erysipelothrix (MIC range, 1 to 8 microg/ml), whereas it proved less active (although much more active than vancomycin or teicoplanin) against Lactobacillus strains. In minimal bactericidal concentration (MBC) and time-kill studies, LY333328 demonstrated excellent bactericidal activity; enterococci, in particular, which were largely tolerant of vancomycin and teicoplanin, were uniformly killed by LY333328, with MBC-to-MIC ratios of 4 to 8 for most vancomycin-susceptible and vancomycin-resistant strains. In attempts to select for resistant clones, no survivors stably growing in the presence of 10 microg of LY333328 per ml were obtained from the Staphylococcus and Enterococcus test strains exposed to the drug.


mSphere ◽  
2020 ◽  
Vol 5 (2) ◽  
Author(s):  
Jeffrey M. Flynn ◽  
Lydia C. Cameron ◽  
Talia D. Wiggen ◽  
Jordan M. Dunitz ◽  
William R. Harcombe ◽  
...  

ABSTRACT A critical limitation in the management of chronic polymicrobial infections is the lack of correlation between antibiotic susceptibility testing (AST) and patient responses to therapy. Underlying this disconnect is our inability to accurately recapitulate the in vivo environment and complex polymicrobial communities in vitro. However, emerging evidence suggests that, if modeled and tested accurately, interspecies relationships can be exploited by conventional antibiotics predicted to be ineffective by standard AST. As an example, under conditions where Pseudomonas aeruginosa relies on cocolonizing organisms for nutrients (i.e., cross-feeding), multidrug-resistant P. aeruginosa may be indirectly targeted by inhibiting the growth of its metabolic partners. While this has been shown in vitro using synthetic bacterial communities, the efficacy of a “weakest-link” approach to controlling host-associated polymicrobial infections has not yet been demonstrated. To test whether cross-feeding inhibition can be leveraged in clinically relevant contexts, we collected sputa from cystic fibrosis (CF) subjects and used enrichment culturing to isolate both P. aeruginosa and anaerobic bacteria from each sample. Predictably, both subpopulations showed various antibiotic susceptibilities when grown independently. However, when P. aeruginosa was cultured and treated under cooperative conditions in which it was dependent on anaerobic bacteria for nutrients, the growth of both the pathogen and the anaerobe was constrained despite their intrinsic antibiotic resistance profiles. These data demonstrate that the control of complex polymicrobial infections may be achieved by exploiting obligate or facultative interspecies relationships. Toward this end, in vitro susceptibility testing should evolve to more accurately reflect in vivo growth environments and microbial interactions found within them. IMPORTANCE Antibiotic efficacy achieved in vitro correlates poorly with clinical outcomes after treatment of chronic polymicrobial diseases; if a pathogen demonstrates susceptibility to a given antibiotic in the lab, that compound is often ineffective when administered clinically. Conversely, if a pathogen is resistant in vitro, patient treatment with that same compound can elicit a positive response. This discordance suggests that the in vivo growth environment impacts pathogen antibiotic susceptibility. Indeed, here we demonstrate that interspecies relationships among microbiotas in the sputa of cystic fibrosis patients can be targeted to indirectly inhibit the growth of Pseudomonas aeruginosa. The therapeutic implication is that control of chronic lung infections may be achieved by exploiting obligate or facultative relationships among airway bacterial community members. This strategy is particularly relevant for pathogens harboring intrinsic multidrug resistance and is broadly applicable to chronic polymicrobial airway, wound, and intra-abdominal infections.


2006 ◽  
Vol 50 (2) ◽  
pp. 806-809 ◽  
Author(s):  
Giuseppantonio Maisetta ◽  
Giovanna Batoni ◽  
Semih Esin ◽  
Walter Florio ◽  
Daria Bottai ◽  
...  

ABSTRACT The antimicrobial activity of human β-defensin 3 (hBD-3) against multidrug-resistant clinical isolates of Staphylococcus aureus, Enterococcus faecium, Pseudomonas aeruginosa, Stenotrophomonas maltophilia, and Acinetobacter baumannii was evaluated. A fast bactericidal effect (within 20 min) against all bacterial strains tested was observed. The presence of 20% human serum abolished the bactericidal activity of hBD-3 against gram-negative strains and reduced the activity of the peptide against gram-positive strains.


2004 ◽  
Vol 186 (14) ◽  
pp. 4808-4812 ◽  
Author(s):  
Pauline Yoong ◽  
Raymond Schuch ◽  
Daniel Nelson ◽  
Vincent A. Fischetti

ABSTRACT Enterococcus faecalis and Enterococcus faecium infections are increasingly difficult to treat due to high levels of resistance to antibiotics. PlyV12, a bacteriophage lytic enzyme, was isolated and shown to effectively kill both E. faecalis and E. faecium (including vancomycin-resistant strains), as well as other human pathogens. We propose its development and use as an alternative therapeutic tool.


2003 ◽  
Vol 47 (11) ◽  
pp. 3542-3547 ◽  
Author(s):  
Patrick Grohs ◽  
Serge Houssaye ◽  
Agnès Aubert ◽  
Laurent Gutmann ◽  
Emmanuelle Varon

ABSTRACT The activity of garenoxacin, a new quinolone, was determined in comparison with other quinolones against different strains of S. pneumoniae, viridans group streptococci (VGS), and Enterococcus faecalis. Strains were quinolone-susceptible clinical isolates and quinolone-resistant strains with defined mechanisms of resistance obtained from either clinical isolates or derivatives of S. pneumoniae R6. Clinical quinolone-susceptible strains of S. pneumoniae, VGS and E. faecalis showed garenoxacin MICs within a range of 0.03 μg/ml to 0.25 μg/ml. Garenoxacin MICs increased two- to eightfold when one mutation was present in the ParC quinolone resistance-determining region (QRDR), fourfold when one mutation was present in the GyrA QRDR (S. pneumoniae), 8- to 64-fold when two or three mutations were associated in ParC and GyrA QRDR, and 2,048-fold when two mutations were present in both the GyrA and ParC QRDRs (Streptococcus pneumoniae). Increased active efflux had a moderate effect on garenoxacin MICs for S. pneumoniae and VGS. Against S. pneumoniae, garenoxacin behaved like moxifloxacin and sparfloxacin, being more affected by a single gyrA mutation than by a single parC mutation. Although garenoxacin was generally two- to fourfold more active than moxifloxacin against the different wild-type or mutant strains of S. pneumoniae, VGS, and E. faecalis, it was two- to fourfold less active than gemifloxacin. At four times the respective MIC for each strain, the bactericidal effect of garenoxacin, observed at 6 h for S. pneumoniae and at 24 h for S. oralis and E. faecalis, was not influenced by the presence of mutation either in the ParC or in both the ParC and GyrA QRDRs.


Sign in / Sign up

Export Citation Format

Share Document