scholarly journals Antileishmanial Activity of a Linalool-Rich Essential Oil from Croton cajucara

2003 ◽  
Vol 47 (6) ◽  
pp. 1895-1901 ◽  
Author(s):  
Maria do Socorro S. Rosa ◽  
Ricardo R. Mendonça-Filho ◽  
Humberto R. Bizzo ◽  
Igor de Almeida Rodrigues ◽  
Rosangela Maria A. Soares ◽  
...  

ABSTRACT The in vitro leishmanicidal effects of a linalool-rich essential oil from the leaves of Croton cajucara against Leishmania amazonensis were investigated. Morphological changes in L. amazonensis promastigotes treated with 15 ng of essential oil per ml were observed by transmission electron microscopy; leishmanial nuclear and kinetoplast chromatin destruction, followed by cell lysis, was observed within 1 h. Pretreatment of mouse peritoneal macrophages with 15 ng of essential oil per ml reduced by 50% the interaction between these macrophages and L. amazonensis, with a concomitant increase by 220% in the level of nitric oxide production by the infected macrophages. Treatment of preinfected macrophages with 15 ng of essential oil per ml reduced by 50% the interaction between these cells and the parasites, which led to a 60% increase in the amount of nitric oxide produced by the preinfected macrophages. These results provide new perspectives on the development of drugs with activities against Leishmania, as linalool-rich essential oil is a strikingly potent leishmanicidal plant extract (50% lethal doses, 8.3 ng/ml for promastigotes and 8.7 ng/ml for amastigotes) which inhibited the growth of L. amazonensis promastigotes at very low concentrations (MIC, 85.0 pg/ml) and which presented no cytotoxic effects against mammalian cells.

1971 ◽  
Vol 133 (2) ◽  
pp. 231-259 ◽  
Author(s):  
Thomas C. Jones ◽  
James G. Hirsch

Methods have been devised for establishing infection in vitro of mouse macrophages and fibroblasts with Mycoplasma pulmonis. The mycoplasmas attached to the cells and under appropriate cultural conditions grew into a lawn of microorganisms covering most of the cell surface. The mycoplasmas grew abundantly on fibroblasts cultured in minimal essential medium containing 20% fetal calf serum; supplementation of this medium with heart infusion broth was necessary to obtain similar growth on macrophages. The infection of these cells appeared to be essentially an extracellular process; only rarely were partially degraded mycoplasmas seen with phagocytic vacuoles. The addition to heavily infected macrophage cultures of low concentrations of anti-mycoplasma antibody stimulated rapid, massive phagocytosis of the surface microorganisms. In sharp contrast, the same antiserum had no discernable effect on the mycoplasma-fibroblast relationship. The antibody effect in the macrophage system was apparently a direct opsonic one rather than an indirect result of microbial killing, since the mycoplasmas in macrophage or fibroblast cultures incorporated labelled thymidine into DNA after the addition of antiserum to the medium. The phagocytic event and the subsequent fate of the mycoplasmas were studied in detail after the addition of antibody to the macrophage cultures. Phase-contrast cinemicrophotography revealed membrane ruffles surrounding the surface mycoplasmas and disappearance from view of the organisms; 10–30 min later translucent grapelike clusters were seen in large phagocytic vacuoles. On electronmicroscopic study the surface mycoplasmas were surrounded by pincers-like projections of the macrophage. Numerous mycoplasmas were seen in phagocytic vacuoles; in the early minutes after the addition of antibody the intracellular mycoplasmas appeared normal, but within 2 hr they appeared partially degraded with a central electron-lucent area and electron-opaque deposits at the microbial cell margin. 24 hr after the addition of antiserum, digestion of the mycoplasmas was nearly complete; the cells appeared normal except for large residual bodies composed of amorphous moderately dense material and increased lipid deposits. Degradation of mycoplasmas within macrophages was also studied using infected cultures in which the mycoplasmas, but not the macrophages, had incorporated tritiated thymidine into DNA. The appearance of large amounts of acid-soluble radiolabel after phagocytosis stimulated by antibody confirmed the degradation of the intracellular mycoplasmas.


Author(s):  
John C. Garancis ◽  
Robert O. Hussa ◽  
Michael T. Story ◽  
Donald Yorde ◽  
Roland A. Pattillo

Human malignant trophoblast cells in continuous culture were incubated for 3 days in medium containing 1 mM N6-O2'-dibutyryl cyclic adenosine 3':5'-monophosphate (dibutyryl cyclic AMP) and 1 mM theophylline. The culture fluid was replenished daily. Stimulated cultures secreted many times more chorionic gonadotropin and estrogens than did control cultures in the absence of increased cellular proliferation. Scanning electron microscopy revealed remarkable surface changes of stimulated cells. Control cells (not stimulated) were smooth or provided with varying numbers of microvilli (Fig. 1). The latter, usually, were short and thin. The surface features of stimulated cells were considerably different. There was marked increase of microvilli which appeared elongated and thick. Many cells were covered with confluent polypoid projections (Fig. 2). Transmission electron microscopy demonstrated marked activity of cytoplasmic organelles. Mitochondria were increased in number and size; some giant forms with numerous cristae were observed.


Molecules ◽  
2019 ◽  
Vol 24 (23) ◽  
pp. 4421 ◽  
Author(s):  
Tasdemir ◽  
Kaiser ◽  
Demirci ◽  
Demirci ◽  
Baser

Essential oil of Origanum species is well known for antimicrobial activity, but only a few have been evaluated in narrow spectrum antiprotozoal assays. Herein, we assessed the antiprotozoal potential of Turkish Origanum onites L. oil and its major constituents against a panel of parasitic protozoa. The essential oil was obtained by hydrodistillation from the dried herbal parts of O. onites and analyzed by Gas Chromatography-Flame Ionization Detector (GC-FID) and Gas Chromatography coupled with Mass Spectrometry (GC-MS). The in vitro activity of the oil and its major components were evaluated against Trypanosoma brucei rhodesiense, T. cruzi, Leishmania donovani, and Plasmodium falciparum. The main component of the oil was identified as carvacrol (70.6%), followed by linalool (9.7%), p-cymene (7%), γ-terpinene (2.1%), and thymol (1.8%). The oil showed significant in vitro activity against T. b. rhodesiense (IC50 180 ng/mL), and moderate antileishmanial and antiplasmodial effects, without toxicity to mammalian cells. Carvacrol, thymol, and 10 additional abundant oil constituents were tested against the same panel; carvacrol and thymol retained the oil’s in vitro antiparasitic potency. In the T. b. brucei mouse model, thymol, but not carvacrol, extended the mean survival of animals. This study indicates the potential of the essential oil of O. onites and its constituents in the treatment of protozoal infections.


Sign in / Sign up

Export Citation Format

Share Document