scholarly journals Association between the Pharmacokinetics and In Vivo Therapeutic Efficacy of Sulfadoxine-Pyrimethamine in Malawian Children

2005 ◽  
Vol 49 (9) ◽  
pp. 3601-3606 ◽  
Author(s):  
Fraction K. Dzinjalamala ◽  
Allan Macheso ◽  
James G. Kublin ◽  
Terrie E. Taylor ◽  
Karen I. Barnes ◽  
...  

ABSTRACT Sulfadoxine-pyrimethamine (SP) has been widely used in recent years to treat acute uncomplicated Plasmodium falciparum malaria. Risk factors for SP therapeutic failure include young age, subtherapeutic SP concentrations, and resistance-conferring genetic mutations in parasite target enzymes. A substantial proportion of patients are able to clear genetically highly resistant P. falciparum genotypes. To determine whether blood SP concentrations independently affect the patient's ability to clear resistant genotypes, we compared SP pharmacokinetics of cases of adequate clinical and parasitological response (ACPR) with cases of treatment failure (TF). When patients with ACPR and TF were compared, mean values were similar for the day 3 blood pyrimethamine (205 ng/ml versus 172 ng/ml; P = 0.25) and estimated maximum sulfadoxine (79 ± 6.52 versus 69 ± 6.27 μg/ml; P = 0.60) concentrations, for sulfadoxine terminal-phase elimination half-lives (7.15 versus 6.41 days; P = 0.42), and for the extents of sulfadoxine absorption (areas under the concentration-time curve of 932 ± 100 versus 888 ± 78.9 μg day ml−1; P = 0.72). Among patients infected with the quintuple resistant parasites, day 3 blood pyrimethamine concentrations were higher in those who cleared the infection than in those who did not (305 ± 35.4 versus 228 ± 21.7 ng/ml; P = 0.037). Within this subgroup, this finding remained significant after adjusting for endogenous folate levels, age, site, and resistance-conferring mutations (odds ratio: 1.011 [1.003 to 1.024]; P = 0.018). However, as a subgroup analysis, our biologically plausible observation that higher blood pyrimethamine concentrations enhance the ability of patients to clear resistant P. falciparum should be interpreted with caution and needs further validation.

2002 ◽  
Vol 46 (11) ◽  
pp. 3484-3489 ◽  
Author(s):  
D. Andes ◽  
M. L. van Ogtrop ◽  
J. Peng ◽  
W. A. Craig

ABSTRACT Linezolid is a new oxazolidinone with activity against gram-positive cocci. We determined the in vivo activity of linezolid against four strains of Staphylococcus aureus (two methicillin-susceptible S. aureus [MSSA] strains and two methicillin-resistant S. aureus strains) and one penicillin-susceptible Streptococcus pneumoniae (PSSP) strain, two penicillin-intermediate S. pneumoniae strains, and five penicillin-resistant S. pneumoniae strains. The mice had 106.3 to 107.7 CFU/thigh before therapy and were then treated for 24 h with 5 to 1,280 mg of linezolid/kg divided into 1, 2, 4, 8, or 16 doses. The killing activities after 4 h of therapy ranged from 2.4 to 5.0 log10 CFU/thigh against S. pneumoniae and 1.35 to 2.2 log10 CFU/thigh against S. aureus. Increasing doses produced minimal concentration-dependent killing; doses of 20 and 80 mg/kg produced no in vivo postantibiotic effects (PAEs) with PSSP and modest PAEs (3.4 and 3.2 h) with MSSA. Pharmacokinetic studies at doses of 20 and 80 mg/kg by high-pressure liquid chromatography analysis exhibited peak dose values of 0.68 and 0.71 and elimination half-lives of 1.02 and 1.00 h. Linezolid MICs ranged from 0.5 to 1.0 μg/ml for S. pneumoniae and from 1.0 to 4.0 μg/ml for S. aureus. A sigmoid dose-response model was used to estimate the dose required to achieve a net bacteriostatic effect over 24 h. Static doses against S. pneumoniae ranged from 22.2 to 97.1 mg/kg/24 h and from 133 to 167 mg/kg/24 h for S. aureus. The 24-h area under the concentration-time curve (AUC)/MIC ratio was the major parameter determining the efficacy of linezolid against PSSP (R 2 = 82% for AUC/MIC versus 57% for T>MIC and 59% for the peak level in serum/MIC [peak/MIC]). It was difficult to determine the most relevant pharmacokinetic/pharmacodynamic parameter with S. aureus, although the outcomes correlated slightly better with the 24-h AUC/MIC ratio (R 2 = 75%) than with the other parameters (T>MIC R 2 = 75% and peak/MIC R 2 = 65%). The 24-h AUC/MIC ratio required for a bacteriostatic effect with linezolid varied from 22 to 97 (mean = 48) for pneumococci and from 39 to 167 (mean = 83) for staphylococci. Based upon a pharmacokinetic goal of a 24-h AUC/MIC of 50 to 100, a dosage regimen of 600 mg given either intravenously or orally twice daily would achieve success against organisms with MICs as high as 2 to 4 μg/ml.


2019 ◽  
Vol 15 (4) ◽  
pp. 338-345
Author(s):  
Lijun Ni ◽  
Lu Ding ◽  
Liguo Zhang ◽  
Shaorong Luan

Background: Tong-Bi-Si-Wei-Fang (TBSWF) is a candidate formula of Traditional Chinese Medicine (TCM) for treating rheumatoid bone diseases, which is composed of rhizoma corydalis alkaloids, saponins of glycyrrhiza uralensis and panax notoginseng, flavonoids of rhizoma drynariae and glycyrrhiza uralensis. </P><P> Objective: Trahydropalmatine (THP), the main active ingredient of rhizoma corydalis alkaloids, was selected to study in vivo pharmacokinetics and druggability of TBSWF. Methods: The plasma concentration-time (C-T) profiles of THP and the pharmacokinetic property parameters after oral administration of THP monomer, extract of corydalis alkaloids (ECA) and TBSWF to rats, respectively were compared by a fully-validated HPLC method. Results: Compared to the THP monomer, the THP in TBSWF is absorbed faster, resides in the plasma longer and has a similar apparent volume of distribution Vz/F (10~20 L/kg). Compared to THP monomer and THP in TBSWF, the area under the concentration-time curve AUC 0-t of THP in ECA decreases two-third; Vz/F of THP in ECA (85.02 L/kg) is significantly higher than that of THP in TBSWF(p <0.05). Unlike THP monomer and THP in ECA, double peaks are observed in the C-T profile of THP after oral administration of TBSWF. THP in TBSWF exhibits slow release to a certain degree. Conclusion: The interactions among the ingredients of TBSWF promote the adsorption and prolong the residence time of THP in vivo, and provide an explanation for the advantages of TBSWF from the point of pharmacokinetics.


2017 ◽  
Vol 62 (2) ◽  
Author(s):  
Alexander J. Lepak ◽  
Miao Zhao ◽  
Brian VanScoy ◽  
Paul G. Ambrose ◽  
David R. Andes

ABSTRACT Echinocandins are important in the prevention and treatment of invasive candidiasis but limited by current dosing regimens that include daily intravenous administration. The novel echinocandin CD101 has a prolonged half-life of approximately 130 h in humans, making it possible to design once-weekly dosing strategies. The present study examined the pharmacodynamic activity of CD101 using the neutropenic invasive candidiasis mouse model against select Candida albicans (n = 4), C. glabrata (n = 3), and C. parapsilosis (n = 3) strains. The CD101 MIC ranged from 0.03 to 1 mg/liter. Plasma pharmacokinetic measurements were performed using uninfected mice after intraperitoneal administration of 1, 4, 16, and 64 mg/kg. The elimination half-life was prolonged at 28 to 41 h. Neutropenic mice were infected with each strain by lateral tail vein injection, treated with a single dose of CD101, and monitored for 7 days, at which time the organism burden was enumerated from the kidneys. Dose-dependent activity was observed for each organism. The pharmacokinetic/pharmacodynamic (PK/PD) index of the area under the concentration-time curve over 24 h in the steady state divided by the MIC (AUC/MIC index) correlated well with efficacy (R 2, 0.74 to 0.93). The median stasis 24-h free-drug AUC/MIC targets were as follows: for C. albicans, 2.92; for C. glabrata, 0.07; and for C. parapsilosis, 2.61. The PK/PD targets for 1-log10 kill endpoint were 2- to 4-fold higher. Interestingly, the aforementioned PK/PD targets of CD101 were numerically lower for all three species than those of other echinocandins. In summary, CD101 is a promising, novel echinocandin with advantageous pharmacokinetic properties and potent in vivo pharmacodynamic activity.


2011 ◽  
Vol 56 (1) ◽  
pp. 70-74 ◽  
Author(s):  
Paul M. Beringer ◽  
Heather Owens ◽  
Albert Nguyen ◽  
Debbie Benitez ◽  
Adupa Rao ◽  
...  

ABSTRACTCystic fibrosis (CF) is characterized by a chronic neutrophilic inflammatory response resulting in airway remodeling and progressive loss of lung function. Doxycycline is a tetracycline antibiotic that inhibits matrix metalloproteinase 9, a protease known to be associated with the severity of lung disease in CF. The pharmacokinetics of doxycycline was investigated during the course of a clinical trial to evaluate the short-term efficacy and safety in adults with CF. Plasma samples were obtained from 14 patients following a single intravenous dose and after 2 and 4 weeks of oral administration of doses ranging from 40 to 200 mg daily. The data were analyzed using noncompartmental and compartmental pharmacokinetics. The maximum concentration of drug in serum (Cmax) and area under the concentration-time curve from 0 h to infinity (AUC0-∞) values ranged from 1.0 to 3.16 mg/liter and 15.2 to 47.8 mg/liter × h, respectively, following single intravenous doses of 40 to 200 mg.Cmaxand time to maximum concentration of drug in serum (Tmax) values following multiple-dose oral administration ranged from 1.15 to 3.04 mg/liter and 1.50 to 2.33 h, respectively, on day 14 and 1.48 to 3.57 mg/liter and 1.00 to 2.17 on day 28. Predose sputum/plasma concentration ratios on days 14 and 28 ranged from 0.33 to 1.1 (mean, 0.71 ± 0.33), indicating moderate pulmonary penetration. A 2-compartment model best described the combined intravenous and oral data. Absorption was slow and delayed (absorption rate constant [Ka], 0.414 h−1; lag time, 0.484 h) but complete (bioavailability [F], 1.16). The distribution and elimination half-lives were 0.557 and 18.1 h, respectively. Based on these data, the plasma concentrations at the highest dose, 200 mg/day, are in the range reported to produce anti-inflammatory effectsin vivoand should be evaluated in clinical trials.


1996 ◽  
Vol 40 (11) ◽  
pp. 2577-2581 ◽  
Author(s):  
D R Luke ◽  
G Foulds ◽  
S F Cohen ◽  
B Levy

To date, the clinical pharmacology of large intravenous doses of azithromycin has not been described. In the present study, single 2-h intravenous infusions of 1, 2, and 4 g of azithromycin were administered to three parallel groups (in each group, six received active drug and two received placebo) of healthy male subjects. Toleration (assessed by scores of subject-administered visual analog scale tests spanning 0 [good] to 10 [poor]), safety, pharmacokinetics, and serum motilin levels were monitored for up to 240 h after the start of each intravenous infusion. Mean nausea scores of 0.0, 0.0, 1.0, and 0.5 and abdominal cramping scores of 0.0, 0.0, 0.4, and 0.4 for 12-h periods after doses of 0, 1, 2, and 4 g of azithromycin, respectively, suggested that azithromycin was well tolerated. Because of the standardized 1-mg/ml infusates, all subjects in the 4-g dosing group complained of an urgent need to urinate. There were no consistent trends in endogenous motilin levels throughout the study. The maximum concentration of azithromycin in serum (10 micrograms/ml after a 4-g dose) and the area under the concentration-time curve (82 micrograms.h/ml after a 4-g dose) were dose related. The mean pharmacokinetic parameters were an elimination half-life of 69 h, total systemic clearance of 10 ml/min/kg, and a volume of distribution at steady state of 33.3 liters/kg. The pharmacokinetic results suggest that the long half-life of azithromycin is due to extensive uptake and slow release of the drug from tissues rather than an inability to clear the drug. Single intravenous doses of up to 4 g of azithromycin in healthy subjects are generally well tolerated, and quantifiable concentrations may persist in serum for 10 days or more.


2019 ◽  
Vol 64 (2) ◽  
Author(s):  
Alexander J. Lepak ◽  
Miao Zhao ◽  
Karen Marchillo ◽  
Jamie VanHecker ◽  
David R. Andes

ABSTRACT Omadacycline is an effective therapy for community-acquired bacterial pneumonia (CABP). Given its potent activity against methicillin-susceptible Staphylococcus aureus (MSSA) and methicillin-resistant S. aureus (MRSA), we sought to determine the pharmacodynamic activity and target pharmacokinetic/pharmacodynamic (PK/PD) exposures associated with a therapeutic effect in the neutropenic mouse pneumonia model against 10 MSSA/MRSA strains. The area under the concentration-time curve (AUC)/MIC associated with 1-log kill was noted at 24-h epithelial lining fluid (ELF) and plasma AUC/MIC exposures of ∼2 (ELF range, <0.93 to 19; plasma range, <1.06 to 17) and 2-log kill was noted at 24-h ELF and plasma AUC/MIC exposures of ∼12 (ELF range, 2.5 to 130; plasma range, 3.5 to 151).


Author(s):  
Hansen Nasif ◽  
Henny Lucida ◽  
Yanwirasti Yanwirasti ◽  
Yufri Aldi ◽  
Yori Yuliandra

Objective: The aims of this study were to investigate the comparative pharmacodynamics effect of methylprednisolone (MP) innovator, MP branded generic, and MP generic products to the serum concentration of annexin A1 (AnxA1).Methods: It was conducted by two-way crossover design in male rabbits. AnxA1 was measured at 0, 0.5, 1, 2, 3, 5, 7, and 9 h after the administration of the drugs. The peak concentration (Cmax), the time at which the peak concentration was achieved (Tmax), and the area under the plasma concentration-time curve (AUC) were also determined.Results: The highest concentration and widest AUC of AnxA1 were obtained in MP innovator drug. MP innovator and branded generic reaches the peak time (Tmax) at the third 3rd h, while the MP generic reaches the peak time at the 5th h. The results showed that there was no significant difference in the serum concentration of AnxA1 between MP tablets after analyzed with a one-way analysis of variance.Conclusion: It could be concluded that the innovator drug of MP tablet gave the same effect on the serum concentration of AnxA1 than its generic counterparts, but an onset of action MP innovator and branded generic is faster than the generic product.


1996 ◽  
Vol 40 (5) ◽  
pp. 1321-1324
Author(s):  
P J Wood ◽  
L L Ioannides-Demos ◽  
E B Bastone ◽  
W J Spicer ◽  
A J McLean

Pseudomonas aeruginosa ATCC 27853 was exposed to tobramycin concentration-time profiles modelling in vivo bolus and infusion dosing. Dependence of bactericidal and bacteriostatic activity on the initial profile of peak concentration (bolus effect > infusion) and area under the antibiotic concentration-time curve was observed at peak concentration/MIC ratios of 10 or below.


2013 ◽  
Vol 57 (4) ◽  
pp. 1743-1755 ◽  
Author(s):  
Pan Deng ◽  
Dafang Zhong ◽  
Kate Yu ◽  
Yifan Zhang ◽  
Ting Wang ◽  
...  

ABSTRACTArbidol is a broad-spectrum antiviral drug that is used clinically to treat influenza. In this study, the pharmacokinetics, metabolism, and excretion of arbidol were investigated in healthy male Chinese volunteers after a single oral administration of 200 mg of arbidol hydrochloride. A total of 33 arbidol metabolites were identified in human plasma, urine, and feces. The principal biotransformation pathways included sulfoxidation, dimethylamineN-demethylation, glucuronidation, and sulfate conjugation. The major drug-related component in the plasma was sulfinylarbidol (M6-1), followed by unmetabolized arbidol,N-demethylsulfinylarbidol (M5), and sulfonylarbidol (M8). The exposures of M5, M6-1, and M8, as determined by the metabolite-to-parent area under the plasma concentration-time curve from 0 tot(AUC0-t) ratio, were 0.9 ± 0.3, 11.5 ± 3.6, and 0.5 ± 0.2, respectively. In human urine, glucuronide and sulfate conjugates were detected as the major metabolites, accounting for 6.3% of the dose excreted within 0 to 96 h after drug administration. The fecal specimens mainly contained the unchanged arbidol, accounting for 32.4% of the dose. Microsomal incubation experiments demonstrated that the liver and intestines were the major organs that metabolize arbidol in humans. CYP3A4 was the major isoform involved in arbidol metabolism, whereas the other P450s and flavin-containing monooxygenases (FMOs) played minor roles. These results indicated possible drug interactions between arbidol and CYP3A4 inhibitors and inducers. Further investigations are needed to understand the importance of M6-1 in the efficacy and safety of arbidol, because of its high plasma exposure and long elimination half-life (25.0 h).


2004 ◽  
Vol 48 (3) ◽  
pp. 815-823 ◽  
Author(s):  
Julie A. Stone ◽  
Xin Xu ◽  
Gregory A. Winchell ◽  
Paul J. Deutsch ◽  
Paul G. Pearson ◽  
...  

ABSTRACT The disposition of caspofungin, a parenteral antifungal drug, was investigated. Following a single, 1-h, intravenous infusion of 70 mg (200 μCi) of [3H]caspofungin to healthy men, plasma, urine, and feces were collected over 27 days in study A (n = 6) and plasma was collected over 26 weeks in study B (n = 7). Supportive data were obtained from a single-dose [3H]caspofungin tissue distribution study in rats (n = 3 animals/time point). Over 27 days in humans, 75.4% of radioactivity was recovered in urine (40.7%) and feces (34.4%). A long terminal phase (t 1/2 = 14.6 days) characterized much of the plasma drug profile of radioactivity, which remained quantifiable to 22.3 weeks. Mass balance calculations indicated that radioactivity in tissues peaked at 1.5 to 2 days at ∼92% of the dose, and the rate of radioactivity excretion peaked at 6 to 7 days. Metabolism and excretion of caspofungin were very slow processes, and very little excretion or biotransformation occurred in the first 24 to 30 h postdose. Most of the area under the concentration-time curve of caspofungin was accounted for during this period, consistent with distribution-controlled clearance. The apparent distribution volume during this period indicated that this distribution process is uptake into tissue cells. Radioactivity was widely distributed in rats, with the highest concentrations in liver, kidney, lung, and spleen. Liver exhibited an extended uptake phase, peaking at 24 h with 35% of total dose in liver. The plasma profile of caspofungin is determined primarily by the rate of distribution of caspofungin from plasma into tissues.


Sign in / Sign up

Export Citation Format

Share Document