scholarly journals Effects of Different Land-use Types on Active Autotrophic Ammonia and Nitrite Oxidizers in Cinnamon Soils

Author(s):  
Xinli Wang ◽  
Yun Wang ◽  
Fei Zhu ◽  
Chi Zhang ◽  
Peiyao Wang ◽  
...  

Land-use types with different disturbance gradients show many variations in soil properties, but the effects of different land-use types on soil nitrifying communities and their ecological implications remain poorly understood. Using 13CO2-DNA-based stable isotope probing (DNA-SIP), we examined the relative importance and active community composition of ammonia-oxidizing archaea (AOA) and bacteria (AOB), and nitrite-oxidizing bacteria (NOB) in soils under three land-use types, forest, cropland, and greenhouse vegetable soil, representing three interference gradients. Soil net nitrification rate was in the order forest soil > cropland soil > greenhouse vegetable soil. DNA-SIP showed that active AOA outcompeted AOB in the forest soil, whereas AOB outperformed AOA in the cropland and greenhouse vegetable soils. Cropland soil was richer in NOB than in AOA and AOB. Phylogenetic analysis revealed that ammonia oxidation in the forest soil was predominantly catalyzed by the AOA Nitrosocosmicus franklandus cluster within the group 1.1b lineage. The 13C-labeled AOB were overwhelmingly dominated by Nitrosospira cluster 3 in the cropland soil. The active AOB Nitrosococcus watsonii lineage was observed in the greenhouse vegetable soil, and it played an important role in nitrification. Active NOB communities were closely affiliated with Nitrospira in the forest and cropland soils, and with Nitrolancea and Nitrococcus in the greenhouse vegetable soil. Canonical correlation analysis showed that soil pH and organic matter content significantly affected the active nitrifier community composition. These results suggest that land-use types with different disturbance gradients alter the distribution of active nitrifier communities by affecting soil physicochemical properties. IMPORTANCE Nitrification plays an important role in the soil N cycle, and land-use management has a profound effect on soil nitrifiers. It is unclear how different gradients of land use affect active ammonia-oxidizing archaea and bacteria and nitrite-oxidizing bacteria. Our research is significant because we determined the response of nitrifiers to human disturbance, which will greatly improve our understanding of the niche of nitrifiers and the differences in their physiology.

2020 ◽  
Vol 35 (1) ◽  
pp. n/a
Author(s):  
Reiko Fujimura ◽  
Yoichi Azegami ◽  
Wei Wei ◽  
Hiroko Kakuta ◽  
Yutaka Shiratori ◽  
...  

2020 ◽  
Author(s):  
Liqun Tang ◽  
Zhijie Shan ◽  
Yang Yu

<p>Re-vegetation has been widely carried out to prevent land degradation, reduce soil erosion, and improve soil quality. In order to investigate the characteristics of soil nutrients content in different land use types of karst gabin basin, soil organic matter, soil total nitrogen, soil total phosphorus, soil total potassium, soil pH, and soil texture in woodland, agricultural land, orchard, and grassland were surveyed in Mengzi Gabin Basin, Southwest of China. The difference of soil indicators between vegetation types was analyzed, and soil fertility quality of four land use types was comprehensively evaluated by the soil quality index (SQI). The results showed that land use significantly affected soil organic matter content. Soil organic matter content was the highest in grassland, followed by agricultural land and forest land, while orchard was lowest. There was a significant difference in soil total nitrogen content between different land uses. The total nitrogen content in farmland soil was the highest, followed by grassland and woodland, and the lowest in the orchard. Woodand had the highest total potassium content and the lowest total phosphorus content. The grassland soil had the highest total phosphorus content and the lowest total potassium content. pH value in the four land use types was acidic, ranged from 5.82 to 6.67. The soil quality index showed that woodland had the highest soil fertility quality. The results of the study could provide the basis of soil nutrients variation and status in Gabin basin, and also provides support for evaluating the soil improvements during vegetation restoration in fragile Karst ecosystems.</p>


Diversity ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 197 ◽  
Author(s):  
Xie Luo ◽  
Xinhua He ◽  
Xiumei Luo ◽  
Yining Liu ◽  
Junqi Wang ◽  
...  

Anti-seasonal drying-wetting cycles since 2010 have substantially altered its soil and vegetation status in the drawdown zone of China’s Three Gorges Reservoir (TGR). Such alternations may thus affect the composition and functioning of soil microbial communities, including the beneficial arbuscular mycorrhizal fungi (AMF), which enhance plant performance. Moreover, limited information is available if AMF communities are different in soils and roots, particularly under contrasting land-use changes. By combining the Illumina Miseq sequencing with bioinformatics analyses, AMF communities in both rhizosphere soils and roots of a stoloniferous and rhizomatous C4 perennial of Cynodon dactylon were characterized under three land-use types: (1) crop cultivated, (2) non-cultivated non-disturbed, and (3) disturbed non-cultivated land. A total of 35 and 26 AMF taxa were respectively detected from C. dactylon rhizosphere soils and roots from these three land-use types, which had endured four anti-seasonal drying/summer-wetting/winter cycles. Contrasting differentiations in the AMF community composition and structure were displayed in the C. dactylon rhizosphere soils and roots, and between land-use types. Nonmetric multidimensional scaling analyses revealed that AMF communities significantly correlated to soil organic carbon in the rhizosphere soils and roots of C. dactylon, to land-use types only in rhizosphere soils, whereas to soil moisture only in roots. Our results highlight the effects of soil nutrients and land-use changes on AMF community composition and diversity under the canopy of C. dactylon in TGR. The identified dominant AMF taxa can be employed to vegetation restoration in such degraded habitats globally.


2014 ◽  
Vol 1010-1012 ◽  
pp. 1113-1119
Author(s):  
Li Qing Du ◽  
Liang Yong Zheng ◽  
Hai Yang Ma ◽  
Hao Wu ◽  
Chang Bin Wei

The effects of different land use types on soil quality was studied in cultivation areas of the mango, longan, greening plant, Ziziphus mauritiana, shelter-forest, and macadamia, as well as in the undeveloped land of the South Subtropical Crops Research Institute. Different land use types showed various effects on soil quality. Higher soil pH and bulk densities in the undeveloped land, higher content of available phosphrous (P) and available potassium (K) in macadamia cultivation areas, and higher organic matter content in shelter-forest land were observed relative to those of other land use types. The integrated fertility index of soil was ranked as follows: shelter-forest land>undeveloped land> Ziziphus mauritiana land>macadamia land and>mango land>longan land>greening plant land. This template explains and demonstrates how to prepare your camera-ready paper for Trans Tech Publications. The best is to read these instructions and follow the outline of this text.


2015 ◽  
Vol 99 (16) ◽  
pp. 6899-6909 ◽  
Author(s):  
Jingxu Zhang ◽  
Yu Dai ◽  
Yilin Wang ◽  
Zhen Wu ◽  
Shuguang Xie ◽  
...  

Soil Systems ◽  
2020 ◽  
Vol 4 (4) ◽  
pp. 69
Author(s):  
Md. Rezaul Karim ◽  
Md Abdul Halim ◽  
Nigel V. Gale ◽  
Sean C. Thomas

A body of emerging research shows the promise of charcoal soil amendments (“biochars”) in restoring fertility in degraded agricultural and forest soils. “Sustainable biochars” derived from locally produced waste biomass and produced near the application site are of particular interest. We tested the effects of surface applications of wood-derived biochars (applied at 7.5 t·ha−1) on soil physiochemical properties (N, P, K, pH, soil moisture content, organic matter content, and bulk density) in three land-use types: agriculture (Camellia sinensis monoculture), agroforestry (C. sinensis with shade trees), and secondary forest (Dipterocarpus dominated) assessed over seven months. We found significant positive effects of biochar on soil physiochemical properties in all land-use types, with the strongest responses in the most degraded tea monoculture sites. Although biochar had no significant effect on soil N and K, it improved soil P—the primary nutrient most commonly limiting in tropical soils. Biochar also enhanced soil moisture and organic matter content, reduced bulk density, and increased soil pH in monoculture sites. Our results support the general hypothesis that biochar can improve the fertility of degraded soils in agricultural and forest systems in Bangladesh and suggest that biochar additions may be of great benefit to the most degraded soils.


Author(s):  
Yijie Shi ◽  
Meiyan Wang ◽  
Tongyan Yao ◽  
Lingying Xu ◽  
Xuezheng Shi

Objective of investigation: Land use conversion strongly alters soil structure and substantially affects soil organic carbon (SOC) sequestration. Changing from an anaerobic paddy field (PF) to a dry land easily causes SOC loss due to stimulation of C decomposition. However, no evidence of SOC loss from PF to intensive vegetable cultivation has been certainly presented. Experimental material: This study was conducted on the long-term cultivated open-field vegetable (OFV) and greenhouse vegetable (GHV) planting area converted from old PF in China. Undisturbed soil cores, natural structured soil, and disturbed soil from top soil layers were using for further analyses. Methods of investigation: To comprehensively investigate SOC and soil structure change in the land use conversion of PF to OFV and PF to GHV, we used 13C-CPMAS NMR spectroscopy to classify the SOC fractions. The soil macropores (> 50 μm) was valued by X-ray computed tomography, and soil aggregates distribution was determined by wet sieving method. Data collection: Data were obtained from the above-mentioned measurements and statistically analyzed in R. Results: The result showed that the SOC stock increased 1-fold from PF to GHV. SOC stability increased with recalcitrant C (aromatic-C and carbonyl-C) raised by 21 %–27 % in GHV bulk soil. Both macropores and macroaggregates (> 250 μm) increased in GHV, accompanied by an accumulation of recalcitrant C in large macroaggregates. Conclusions: we confirmed the expanded GHV cultivation sequestered more belowground SOC than PF, associated with the amplified physical protection by enhancing soil aggregation and by redistributing of soil macropores.


Sign in / Sign up

Export Citation Format

Share Document