scholarly journals Distinct Community Composition of Previously Uncharacterized Denitrifying Bacteria and Fungi across Different Land-Use Types

2020 ◽  
Vol 35 (1) ◽  
pp. n/a
Author(s):  
Reiko Fujimura ◽  
Yoichi Azegami ◽  
Wei Wei ◽  
Hiroko Kakuta ◽  
Yutaka Shiratori ◽  
...  
Author(s):  
Xinli Wang ◽  
Yun Wang ◽  
Fei Zhu ◽  
Chi Zhang ◽  
Peiyao Wang ◽  
...  

Land-use types with different disturbance gradients show many variations in soil properties, but the effects of different land-use types on soil nitrifying communities and their ecological implications remain poorly understood. Using 13CO2-DNA-based stable isotope probing (DNA-SIP), we examined the relative importance and active community composition of ammonia-oxidizing archaea (AOA) and bacteria (AOB), and nitrite-oxidizing bacteria (NOB) in soils under three land-use types, forest, cropland, and greenhouse vegetable soil, representing three interference gradients. Soil net nitrification rate was in the order forest soil > cropland soil > greenhouse vegetable soil. DNA-SIP showed that active AOA outcompeted AOB in the forest soil, whereas AOB outperformed AOA in the cropland and greenhouse vegetable soils. Cropland soil was richer in NOB than in AOA and AOB. Phylogenetic analysis revealed that ammonia oxidation in the forest soil was predominantly catalyzed by the AOA Nitrosocosmicus franklandus cluster within the group 1.1b lineage. The 13C-labeled AOB were overwhelmingly dominated by Nitrosospira cluster 3 in the cropland soil. The active AOB Nitrosococcus watsonii lineage was observed in the greenhouse vegetable soil, and it played an important role in nitrification. Active NOB communities were closely affiliated with Nitrospira in the forest and cropland soils, and with Nitrolancea and Nitrococcus in the greenhouse vegetable soil. Canonical correlation analysis showed that soil pH and organic matter content significantly affected the active nitrifier community composition. These results suggest that land-use types with different disturbance gradients alter the distribution of active nitrifier communities by affecting soil physicochemical properties. IMPORTANCE Nitrification plays an important role in the soil N cycle, and land-use management has a profound effect on soil nitrifiers. It is unclear how different gradients of land use affect active ammonia-oxidizing archaea and bacteria and nitrite-oxidizing bacteria. Our research is significant because we determined the response of nitrifiers to human disturbance, which will greatly improve our understanding of the niche of nitrifiers and the differences in their physiology.


Diversity ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 197 ◽  
Author(s):  
Xie Luo ◽  
Xinhua He ◽  
Xiumei Luo ◽  
Yining Liu ◽  
Junqi Wang ◽  
...  

Anti-seasonal drying-wetting cycles since 2010 have substantially altered its soil and vegetation status in the drawdown zone of China’s Three Gorges Reservoir (TGR). Such alternations may thus affect the composition and functioning of soil microbial communities, including the beneficial arbuscular mycorrhizal fungi (AMF), which enhance plant performance. Moreover, limited information is available if AMF communities are different in soils and roots, particularly under contrasting land-use changes. By combining the Illumina Miseq sequencing with bioinformatics analyses, AMF communities in both rhizosphere soils and roots of a stoloniferous and rhizomatous C4 perennial of Cynodon dactylon were characterized under three land-use types: (1) crop cultivated, (2) non-cultivated non-disturbed, and (3) disturbed non-cultivated land. A total of 35 and 26 AMF taxa were respectively detected from C. dactylon rhizosphere soils and roots from these three land-use types, which had endured four anti-seasonal drying/summer-wetting/winter cycles. Contrasting differentiations in the AMF community composition and structure were displayed in the C. dactylon rhizosphere soils and roots, and between land-use types. Nonmetric multidimensional scaling analyses revealed that AMF communities significantly correlated to soil organic carbon in the rhizosphere soils and roots of C. dactylon, to land-use types only in rhizosphere soils, whereas to soil moisture only in roots. Our results highlight the effects of soil nutrients and land-use changes on AMF community composition and diversity under the canopy of C. dactylon in TGR. The identified dominant AMF taxa can be employed to vegetation restoration in such degraded habitats globally.


2015 ◽  
Vol 12 (8) ◽  
pp. 2585-2596 ◽  
Author(s):  
L. Ma ◽  
C. Guo ◽  
X. Lü ◽  
S. Yuan ◽  
R. Wang

Abstract. Global environmental factors impact soil microbial communities and further affect organic matter decomposition, nutrient cycling and vegetation dynamic. However, little is known about the relative contributions of climate factors, soil properties, vegetation types, land management practices and spatial structure (which serves as a proxy for underlying effects of temperature and precipitation for spatial variation) on soil microbial community composition and biomass at large spatial scales. Here, we compared soil microbial communities using phospholipid fatty acid method across 7 land use types from 23 locations at a regional scale in northeastern China (850 × 50 km). The results showed that soil moisture and land use changes were most closely related to microbial community composition and biomass at the regional scale, while soil total C content and climate effects were weaker but still significant. Factors such as spatial structure, soil texture, nutrient availability and vegetation types were not important. Higher contributions of gram-positive bacteria were found in wetter soils, whereas higher contributions of gram-negative bacteria and fungi were observed in drier soils. The contributions of gram-negative bacteria and fungi were lower in heavily disturbed soils than historically disturbed and undisturbed soils. The lowest microbial biomass appeared in the wettest and driest soils. In conclusion, dominant climate and soil properties were not the most important drivers governing microbial community composition and biomass because of inclusion of irrigated and managed practices, and thus soil moisture and land use appear to be primary determinants of microbial community composition and biomass at the regional scale in northeastern China.


Author(s):  
Trần Thanh Đức

This research carried out in Huong Vinh commune, Huong Tra town, Thua Thien Hue province aimed to identify types of land use and soil characteristics. Results showed that five crops are found in Huong Vinh commune including rice, peanut, sweet potato, cassava and vegetable. There are two major soil orders with four soil suborders classified by FAO in Huong Vinh commune including Fluvisols (Dystric Fluvisols<em>, </em>Gleyic Fluvisols and Cambic Fluvisols) and Arenosols (Haplic Arenosols). The results from soil analysis showed that three soil suborders including Dystric Fluvisols<em>, </em>Gleyic Fluvisols and Cambic Fluvisols belonging to Fluvisols were clay loam in texture, low pH, low in OC, total N, total P<sub>2</sub>O<sub>5</sub> and total K<sub>2</sub>O. Meanwhile, the Haplic Arenosols was loamy sand in texture, poor capacity to hold OC, total N, total P<sub>2</sub>O<sub>5</sub> and total K<sub>2</sub>O


Sign in / Sign up

Export Citation Format

Share Document