scholarly journals High-Pressure Inactivation of Human Norovirus Virus-Like Particles Provides Evidence that the Capsid of Human Norovirus Is Highly Pressure Resistant

2012 ◽  
Vol 78 (15) ◽  
pp. 5320-5327 ◽  
Author(s):  
Fangfei Lou ◽  
Pengwei Huang ◽  
Hudaa Neetoo ◽  
Joshua B. Gurtler ◽  
Brendan A. Niemira ◽  
...  

ABSTRACTHuman norovirus (NoV) is the leading cause of nonbacterial acute gastroenteritis epidemics worldwide. High-pressure processing (HPP) has been considered a promising nonthermal processing technology to inactivate food- and waterborne viral pathogens. Due to the lack of an effective cell culture method for human NoV, the effectiveness of HPP in inactivating human NoV remains poorly understood. In this study, we evaluated the effectiveness of HPP in disrupting the capsid of human NoV based on the structural and functional integrity of virus-like particles (VLPs) and histo-blood group antigen (HBGA) receptor binding assays. We found that pressurization at 500 to 600 MPa for 2 min, a pressure level that completely inactivates murine norovirus and feline calicivirus, was not sufficient to disrupt the structure and function of human NoV VLPs, even with a holding time of 60 min. Degradation of VLPs increased commensurate with increasing pressure levels more than increasing time. The times required for complete disruption of human NoV VLPs at 700, 800, and 900 MPa were 45, 15, and 2 min, respectively. Human NoV VLPs were more resistant to HPP in their ability to bind type A than type B and O HBGAs. Additionally, the 23-nm VLPs appeared to be much more stable than the 38-nm VLPs. Taken together, our results demonstrated that the human NoV capsid is highly resistant to HPP. While human NoV VLPs may not be fully representative of viable human NoV, destruction of the VLP capsid is highly suggestive of a typical response for viable human NoV.

2006 ◽  
Vol 73 (2) ◽  
pp. 581-585 ◽  
Author(s):  
David H. Kingsley ◽  
Daniel R. Holliman ◽  
Kevin R. Calci ◽  
Haiqiang Chen ◽  
George J. Flick

ABSTRACT Murine norovirus (strain MNV-1), a propagable norovirus, was evaluated for susceptibility to high-pressure processing. Experiments with virus stocks in Dulbecco's modified Eagle medium demonstrated that at room temperature (20°C) the virus was inactivated over a pressure range of 350 to 450 MPa, with a 5-min, 450-MPa treatment being sufficient to inactivate 6.85 log10 PFU of MNV-1. The inactivation of MNV-1 was enhanced when pressure was applied at an initial temperature of 5°C; a 5-min pressure treatment of 350 MPa at 30°C inactivated 1.15 log10 PFU of virus, while the same treatment at 5°C resulted in a reduction of 5.56 log10 PFU. Evaluation of virus inactivation as a function of treatment times ranging from 0 to 150 s and 0 to 900 s at 5°C and 20°C, respectively, indicated that a decreasing rate of inactivation with time was consistent with Weibull or log-logistic inactivation kinetics. The inactivation of MNV-1 directly within oyster tissues was demonstrated; a 5-min, 400-MPa treatment at 5°C was sufficient to inactivate 4.05 log10 PFU. This work is the first demonstration that norovirus can be inactivated by high pressure and suggests good prospects for inactivation of nonpropagable human norovirus strains in foods.


2010 ◽  
Vol 77 (5) ◽  
pp. 1862-1871 ◽  
Author(s):  
Fangfei Lou ◽  
Hudaa Neetoo ◽  
Haiqiang Chen ◽  
Jianrong Li

ABSTRACTFresh produce is often a high-risk food for norovirus contamination because it can become contaminated at both preharvest and postharvest stages and it undergoes minimal or no processing. Currently, there is no effective method to eliminate the viruses from fresh produce. This study systematically investigated the effectiveness of high-pressure processing (HPP) on inactivating murine norovirus (MNV-1), a surrogate for human norovirus, in aqueous medium and fresh produce. We demonstrated that MNV-1 was effectively inactivated by HPP. More than a 5-log-PFU/g reduction was achieved in all tested fresh produce when it was pressurized at 400 MPa for 2 min at 4°C. We found that pressure, pH, temperature, and food matrix affected the virus survival in foods. MNV-1 was more effectively inactivated at 4°C than at 20°C in both medium and fresh produce. MNV-1 was also more sensitive to HPP at neutral pH than at acidic pH. We further demonstrated that disruption of viral capsid structure, but not degradation of viral genomic RNA, is the primary mechanism of virus inactivation by HPP. However, HPP does not degrade viral capsid protein, and the pressurized capsid protein was still antigenic. Overall, HPP had a variable effect on the sensorial quality of fresh produce, depending on the pressure level and type of product. Taken together, HPP effectively inactivated a human norovirus surrogate in fresh produce with a minimal impact on food quality and thus can provide a novel intervention for processing fruits intended for frozen storage and related products such as purees, sauces, and juices.


2016 ◽  
Vol 82 (19) ◽  
pp. 6037-6045 ◽  
Author(s):  
Fangfei Lou ◽  
Erin DiCaprio ◽  
Xinhui Li ◽  
Xianjun Dai ◽  
Yuanmei Ma ◽  
...  

ABSTRACTHuman norovirus (HuNoV) is a leading cause of foodborne diseases worldwide. High-pressure processing (HPP) is one of the most promising nonthermal technologies for the decontamination of viral pathogens in foods. However, the survival of HuNoVs after HPP is poorly understood because these viruses cannot be propagatedin vitro. In this study, we estimated the survival of different HuNoV strains within genogroup II (GII) after HPP treatment using viral receptor-binding ability as an indicator. Four HuNoV strains (one GII genotype 1 [GII.1] strain, two GII.4 strains, and one GII.6 strain) were treated at high pressures ranging from 200 to 600 MPa. After treatment, the intact viral particles were captured by porcine gastric mucin-conjugated magnetic beads (PGM-MBs) that contained histo-blood group antigens, the functional receptors for HuNoVs. The genomic RNA copies of the captured HuNoVs were quantified by real-time reverse transcriptase PCR (RT-PCR). Two GII.4 HuNoVs had similar sensitivities to HPP. The resistance of HuNoV strains against HPP ranked as follows: GII.1 > GII.6 > GII.4, with GII.4 being the most sensitive. Evaluation of temperature and matrix effects on HPP-mediated inactivation of HuNoV GII.4, GII.1, and GII.6 strains showed that HuNoV was more easily inactivated at lower temperatures and at a neutral pH. In addition, phosphate-buffered saline (PBS) and minimal essential medium (MEM) can provide protective effects against HuNoV inactivation compared to H2O. Collectively, this study demonstrated that (i) different HuNoV strains within GII exhibited different sensitivities to high pressure, and (ii) HPP is capable of inactivating HuNoV GII strains by optimizing pressure parameters.IMPORTANCEHuman norovirus (HuNoV) is a leading cause of foodborne disease worldwide. Noroviruses are highly diverse, both antigenically and genetically. Genogroup II (GII) contains the majority of HuNoVs, with GII genotype 4 (GII.4) being the most prevalent. Recently, GII.1 and GII.6 have emerged and caused many outbreaks worldwide. However, the survival of these GII HuNoVs is poorly understood because they are uncultivablein vitro. Using a novel receptor-binding assay conjugated with real-time RT-PCR, we found that GII HuNoVs had variable susceptibilities to high-pressure processing (HPP), which is one of the most promising food-processing technologies. The resistance of HuNoV strains to HPP ranked as follows: GII.1 > GII.6 > GII.4. This study highlights the ability of HPP to inactivate HuNoV and the need to optimize processing conditions based on HuNoV strain variability and sample matrix.


2014 ◽  
Vol 80 (18) ◽  
pp. 5743-5751 ◽  
Author(s):  
Theresa Cromeans ◽  
Geun Woo Park ◽  
Veronica Costantini ◽  
David Lee ◽  
Qiuhong Wang ◽  
...  

ABSTRACTHuman norovirus is the leading cause of epidemic and sporadic acute gastroenteritis. Since no cell culture method for human norovirus exists, cultivable surrogate viruses (CSV), including feline calicivirus (FCV), murine norovirus (MNV), porcine enteric calicivirus (PEC), and Tulane virus (TuV), have been used to study responses to inactivation and disinfection methods. We compared the levels of reduction in infectivities of CSV and Aichi virus (AiV) after exposure to extreme pHs, 56°C heating, alcohols, chlorine on surfaces, and high hydrostatic pressure (HHP), using the same matrix and identical test parameters for all viruses, as well as the reduction of human norovirus RNA levels under these conditions. At pH 2, FCV was inactivated by 6 log10units, whereas MNV, TuV, and AiV were resistant. All CSV were completely inactivated at 56°C within 20 min. MNV was inactivated 5 log10units by alcohols, in contrast to 2 and 3 log10units for FCV and PEC, respectively. TuV and AiV were relatively insensitive to alcohols. FCV was reduced 5 log10units by 1,000 ppm chlorine, in contrast to 1 log10unit for the other CSV. All CSV except FCV, when dried on stainless steel surfaces, were insensitive to 200 ppm chlorine. HHP completely inactivated FCV, MNV, and PEC at ≥300 MPa, and TuV at 600 MPa, while AiV was completely resistant to HHP up to 800 MPa. By reverse transcription-quantitative PCR (RT-qPCR), genogroup I (GI) noroviruses were more sensitive than GII noroviruses to alcohols, chlorine, and HHP. Although inactivation profiles were variable for each treatment, TuV and MNV were the most resistant CSV overall and therefore are the best candidates for studying the public health outcomes of norovirus infections.


Food Control ◽  
2009 ◽  
Vol 20 (11) ◽  
pp. 992-996 ◽  
Author(s):  
Dan Li ◽  
Qingjuan Tang ◽  
Jingfeng Wang ◽  
Yuming Wang ◽  
Qin Zhao ◽  
...  

2012 ◽  
Vol 75 (11) ◽  
pp. 1984-1990 ◽  
Author(s):  
KATIE MARIE HORM ◽  
FEDERICO MIGUEL HARTE ◽  
DORIS HELEN D'SOUZA

Novel processing technologies such as high pressure homogenization (HPH) for the inactivation of foodborne viruses in fluids that retain nutritional attributes are in high demand. The objectives of this research were (i) to determine the effects of HPH alone or with an emulsifier (lecithin) on human norovirus surrogates—murine norovirus (MNV-1) and feline calicivirus (FCVF9)—in skim milk and orange juice, and (ii) to determine HPH effects on FCV-F9 and MNV-1 in orange and pomegranate juice blends. Experiments were conducted in duplicate at 0, 100, 200, 250, and 300 MPa for <2 s and plaque was assayed in duplicate. In milk, FCV-F9 was reduced by ≥4 and ~1.3 log PFU/ml at 300 and 250 MPa, respectively, and ≥4- and ~1-log PFU/ml reductions were obtained in orange juice at 300 and 250 MPa, respectively. In orange juice or milk combined with lecithin, FCVF9 was reduced to nondetectable levels at 300 MPa, and by 1.77 and 0.78 log PFU/ml at 250 MPa. MNV-1 in milk was reduced by ~1.3 log PFU/ml only at 300 MPa, and by ~0.8 and ~0.4 log PFU/ml in orange juice at 300 and 250 MPa, respectively. MNV-1 in milk or orange juice containing lecithin at 300 MPa showed 1.32- and 2.5-log PFU/ml reductions, respectively. In the pomegranate-orange juice blend, FCV-F9 was completely reduced, and MNV-1 was reduced by 1.04 and 1.78 log PFU/ml at 250 and 300 MPa, respectively. These results show that HPH has potential for commercial use to inactivate foodborne virus surrogates in juices.


2011 ◽  
Vol 8 (2) ◽  
pp. 249-253 ◽  
Author(s):  
Gloria Sánchez ◽  
Rosa Aznar ◽  
Antonio Martínez ◽  
Dolores Rodrigo

2010 ◽  
Vol 137 (2-3) ◽  
pp. 186-189 ◽  
Author(s):  
Qingjuan Tang ◽  
Dan Li ◽  
Jie Xu ◽  
Jingfeng Wang ◽  
Yuran Zhao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document