nonthermal processing
Recently Published Documents


TOTAL DOCUMENTS

66
(FIVE YEARS 21)

H-INDEX

14
(FIVE YEARS 2)

Author(s):  
Gustavo V. Barbosa-Cánovas ◽  
Francesco Donsì ◽  
Semanur Yildiz ◽  
Kezban Candoğan ◽  
Prashant Raj Pokhrel ◽  
...  

Author(s):  
Mati Ullah Khan ◽  
Hong Lin ◽  
Ishfaq Ahmed ◽  
Yan Chen ◽  
Jinlong Zhao ◽  
...  

2021 ◽  
Author(s):  
He Yangbo ◽  
Li Yongfu ◽  
Luo Xingbang ◽  
Li Guolin ◽  
Duan Zhaoyan ◽  
...  

Processes ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 722
Author(s):  
Sai Kranthi Vanga ◽  
Jin Wang ◽  
Shesha Jayaram ◽  
Vijaya Raghavan

There is increasing demand among consumers for food products free of chemical preservatives, minimally processed and have fresh-like natural flavors. To meet these growing demands, the industries and researchers are finding alternative processing methods, which involve nonthermal methods to obtain a quality product that meets the consumer demands and adheres to the food safety protocols. In the past two decades’ various research groups have developed a wide range of nonthermal processing methods, of which few have shown potential in replacing the traditional thermal processing systems. Among all the methods, ultrasonication (US) and pulsed electric field (PEF) seem to be the most effective in attaining desirable food products. Several researchers have shown that these methods significantly affect various major and minor nutritional components present in food, including proteins and enzymes. In this review, we are going to discuss the effect of nonthermal methods on proteins, including enzymes. This review comprises results from the latest studies conducted from all over the world, which would help the research community and industry investigate the future pathway for nonthermal processing methods, especially in preserving the nutritional safety and integrity of the food.


Author(s):  
Tony Jin ◽  
RAMADAN M. ABOELHAGGAG ◽  
Mingming Guo

This study investigated the effectiveness of pulsed electric fields (PEF) treatment (19, 23, 30 kV/cm), pulsed UV light (PL) treatment (5 to 50 s; 1.04 J/cm 2 /s), and antimicrobial packaging (AP) treatment, either individually or combined, in inactivating bacteria and in maintaining the quality of fruit juices. Apple juice samples, inoculated with Escherichia coli K12 or native mold and yeast (M&Y), were treated by a bench scale PEF and/or PL processing systems and stored in glass jars with antimicrobial caps containing 10 µl of carvacrol (AP). The reduction in microbial populations and the physicochemical properties of juice samples were determined after treatments and during storage at 10°C. The treatments included PL (5 to 50 s; 1.04 J/cm 2 /s ), PEF (19, 23, 30 kV/cm), PEF followed by PL (PEF+PL), PL followed by PEF (PL+PEF), and PEF+PL+AP. PEF treatments from 19 to 30 kV/cm (PEF19, PEF23, PEF30) achieved E. coli reduction by 2.0, 2.6 and 4.0 log CFU/ml, respectively; PL treatments for 10 to 50 seconds (PL10, PL20, PL30, PL40, PL50) achieved E. coli reduction by 0.45, 0.67, 0.76, 2.3, and 4.0 log CFU/ml, respectively. There were no significant (p>0.05) differences between the combined PL20+PEF19 and PEF19+PL20 treatments; both treatments reduced E. coli K12 populations to non-detectable levels (> 5 log reduction) after 7 days. Both PEF+PL and PEF+PL+AP treatments achieved over 5 log reduction of M&Y; however, juice samples subject to PEF+PL+AP treatment had lower M&Y counts (2.9 log) than samples subject to PEF+PL treatment (3.9 log) after 7 days. There were no significant (p > 0.05) differences in pH, acidity, total soluble solid contents among all samples after treatments. Increased PL treatment times reduced color a*, b* values, total phenolics and carotenoid contents. This study provides valuable information to juice processors for consideration and design of nonthermal pasteurization of juice products.


2020 ◽  
Vol 143 (2) ◽  
Author(s):  
Hong Shen ◽  
Han Wang ◽  
Chenyun Tian

Abstract In this work, a numerical model to predict the heat accumulation of fused silica induced by ultrafast laser scanning is put forward, which is composed of an ionization model and a steady electromagnetic model. The ionization model is to obtain the energy deposition induced by single laser pulse. Subsequently, the temperature evolution during ultrafast laser scanning is estimated through the superposition of the heat impact by each laser pulse. The ablated profile from experiments is compared with the predicted profile of heat-affected zone (HAZ) to illustrate the nonthermal processing window, which is validated by Raman spectrum. The analysis of the parametric sensitivity on heat accumulation is carried out, and the laser pulse energy is the dominating factor.


Sign in / Sign up

Export Citation Format

Share Document