scholarly journals Recycling of Overactivated Acyls by a Type II Thioesterase during Calcimycin Biosynthesis in Streptomyces chartreusis NRRL 3882

2018 ◽  
Vol 84 (12) ◽  
pp. e00587-18
Author(s):  
Hao Wu ◽  
Jingdan Liang ◽  
Lixia Gou ◽  
Qiulin Wu ◽  
Wei-Jun Liang ◽  
...  

ABSTRACT Type II thioesterases typically function as editing enzymes, removing acyl groups that have been misconjugated to acyl carrier proteins during polyketide secondary metabolite biosynthesis as a consequence of biosynthetic errors. Streptomyces chartreusis NRRL 3882 produces the pyrrole polyether ionophoric antibiotic, and we have identified the presence of a putative type II thioesterase-like sequence, calG, within the biosynthetic gene cluster involved in the antibiotic's synthesis. However, targeted gene mutagenesis experiments in which calG was inactivated in the organism did not lead to a decrease in calcimycin production but rather reduced the strain's production of its biosynthetic precursor, cezomycin. Results from in vitro activity assays of purified, recombinant CalG protein indicated that it was involved in the hydrolysis of cezomycin coenzyme A (cezomycin-CoA), as well as other acyl CoAs, but was not active toward 3-S-N-acetylcysteamine (SNAC; the mimic of the polyketide chain-releasing precursor). Further investigation of the enzyme's activity showed that it possessed a cezomycin-CoA hydrolysis Km of 0.67 mM and a kcat of 17.77 min−1 and was significantly inhibited by the presence of Mn2+ and Fe2+ divalent cations. Interestingly, when S. chartreusis NRRL 3882 was cultured in the presence of inorganic nitrite, NaNO2, it was observed that the production of calcimycin rather than cezomycin was promoted. Also, supplementation of S. chartreusis NRRL 3882 growth medium with the divalent cations Ca2+, Mg2+, Mn2+, and Fe2+ had a similar effect. Taken together, these observations suggest that CalG is not responsible for megasynthase polyketide precursor chain release during the synthesis of calcimycin or for retaining the catalytic efficiency of the megasynthase enzyme complex as is supposed to be the function for type II thioesterases. Rather, our results suggest that CalG is a dedicated thioesterase that prevents the accumulation of cezomycin-CoA when intracellular nitrogen is limited, an apparently new and previously unreported function of type II thioesterases. IMPORTANCE Type II thioesterases (TEIIs) are generally regarded as being responsible for removing aberrant acyl groups that block polyketide production, thereby maintaining the efficiency of the megasynthase involved in this class of secondary metabolites' biosynthesis. Specifically, this class of enzyme is believed to be involved in editing misprimed precursors, controlling initial units, providing key intermediates, and releasing final synthetic products in the biosynthesis of this class of secondary metabolites. Our results indicate that the putative TEII CalG present in the calcimycin (A23187)-producing organism Streptomyces chartreusis NRRL 3882 is not important either for the retention of catalytic efficiency of, or for the release of the product compound from, the megasynthase involved in calcimycin biosynthesis. Rather, the enzyme is involved in regulating/controlling the pool size of the calcimycin biosynthetic precursor, cezomycin, by hydrolysis of its CoA derivative. This novel function of CalG suggests a possible additional activity for enzymes belonging to the TEII protein family and promotes better understanding of the overall biosynthetic mechanisms involved in the production of this class of secondary metabolites.

mBio ◽  
2012 ◽  
Vol 3 (5) ◽  
Author(s):  
Ye Xu ◽  
Andrew Willems ◽  
Catherine Au-yeung ◽  
Kapil Tahlan ◽  
Justin R. Nodwell

ABSTRACT Many microorganisms produce secondary metabolites that have antibiotic activity. To avoid self-inhibition, the producing cells often encode cognate export and/or resistance mechanisms in the biosynthetic gene clusters for these molecules. Actinorhodin is a blue-pigmented antibiotic produced by Streptomyces coelicolor. The actAB operon, carried in the actinorhodin biosynthetic gene cluster, encodes two putative export pumps and is regulated by the transcriptional repressor protein ActR. In this work, we show that normal actinorhodin yields require actAB expression. Consistent with previous in vitro work, we show that both actinorhodin and its 3-ring biosynthetic intermediates [e.g., (S)-DNPA] can relieve repression of actAB by ActR in vivo. Importantly, an ActR mutant that interacts productively with (S)-DNPA but not with actinorhodin responds to the actinorhodin biosynthetic pathway with the induction of actAB and normal yields of actinorhodin. This suggests that the intermediates are sufficient to trigger the export genes in actinorhodin-producing cells. We further show that actinorhodin-producing cells can induce actAB expression in nonproducing cells; however, in this case actinorhodin is the most important signal. Finally, while the “intermediate-only” ActR mutant permits sufficient actAB expression for normal actinorhodin yields, this expression is short-lived. Sustained culture-wide expression requires a subsequent actinorhodin-mediated signaling step, and the defect in this response causes widespread cell death. These results are consistent with a two-step model for actinorhodin export and resistance where intermediates trigger initial expression for export from producing cells and actinorhodin then triggers sustained export gene expression that confers culture-wide resistance. IMPORTANCE Understanding the links between antibiotic resistance and biosynthesis is important for our efforts to manipulate secondary metabolism. For example, many secondary metabolites are produced at low levels; our work suggests that manipulating export might be one way to enhance yields of these molecules. It also suggests that understanding resistance will be relevant to the generation of novel secondary metabolites through the creation of synthetic secondary metabolic gene clusters. Finally, these cognate resistance mechanisms are related to mechanisms that arise in pathogenic bacteria, and understanding them is relevant to our ability to control microbial infections clinically.


2018 ◽  
Vol 6 (25) ◽  
Author(s):  
Thao D. Tran ◽  
Steven Huynh ◽  
Craig T. Parker ◽  
Robert Hnasko ◽  
Lisa Gorski ◽  
...  

ABSTRACT Here, we report the complete genome sequences of three Bacillus amyloliquefaciens strains isolated from alfalfa, almond drupes, and grapes that inhibited the growth of Listeria monocytogenes strain 2011L-2857 in vitro. We also report multiple gene clusters encoding secondary metabolites that may be responsible for the growth inhibition of L. monocytogenes.


2021 ◽  
Vol 87 (10) ◽  
Author(s):  
Xing Han ◽  
Jiao Wang ◽  
Lianna Liu ◽  
Fengying Shen ◽  
Qingfang Meng ◽  
...  

ABSTRACT A group of polyene macrolides mainly composed of two constituents was isolated from the fermentation broth of Streptomyces roseoflavus Men-myco-93-63, which was isolated from soil where potato scabs were repressed naturally. One of these macrolides was roflamycoin, which was first reported in 1968, and the other was a novel compound named Men-myco-A, which had one methylene unit more than roflamycoin. Together, they were designated RM. This group of antibiotics exhibited broad-spectrum antifungal activities in vitro against 17 plant-pathogenic fungi, with 50% effective concentrations (EC50) of 2.05 to 7.09 μg/ml and 90% effective concentrations (EC90) of 4.32 to 54.45 μg/ml, which indicates their potential use in plant disease control. Furthermore, their biosynthetic gene cluster was identified, and the associated biosynthetic assembly line was proposed based on a module and domain analysis of polyketide synthases (PKSs), supported by findings from gene inactivation experiments. IMPORTANCE Streptomyces roseoflavus Men-myco-93-63 is a biocontrol strain that has been studied in our laboratory for many years and exhibits a good inhibitory effect in many crop diseases. Therefore, the identification of antimicrobial metabolites is necessary and our main objective. In this work, chemical, bioinformatic, and molecular biological methods were combined to identify the structures and biosynthesis of the active metabolites. This work provides a new alternative agent for the biological control of plant diseases and is helpful for improving both the properties and yield of the antibiotics via genetic engineering.


2014 ◽  
Vol 58 (9) ◽  
pp. 5191-5201 ◽  
Author(s):  
Giorgia Letizia Marcone ◽  
Elisa Binda ◽  
Lucia Carrano ◽  
Mervyn Bibb ◽  
Flavia Marinelli

ABSTRACTGlycopeptides and β-lactams inhibit bacterial peptidoglycan synthesis in Gram-positive bacteria; resistance to these antibiotics is studied intensively in enterococci and staphylococci because of their relevance to infectious disease. Much less is known about antibiotic resistance in glycopeptide-producing actinomycetes that are likely to represent the evolutionary source of resistance determinants found in bacterial pathogens.Nonomuraeasp. ATCC 39727, the producer of A40926 (the precursor for the semisynthetic dalbavancin), does not harbor the canonicalvanHAXgenes. Consequently, we investigated the role of the β-lactam-sensitived,d-peptidase/d,d-carboxypeptidase encoded byvanYn, the onlyvan-like gene found in the A40926 biosynthetic gene cluster, in conferring immunity to the antibiotic inNonomuraeasp. ATCC 39727. Taking advantage of the tools developed recently to genetically manipulate this uncommon actinomycete, we variedvanYngene dosage and expressedvanHatAatXatfrom the teicoplanin producerActinoplanes teichomyceticusinNonomuraeasp. ATCC 39727. Knocking outvanYn, complementing avanYnmutant, or duplicatingvanYnhad no effect on growth but influenced antibiotic resistance and, in the cases of complementation and duplication, antibiotic production.Nonomuraeasp. ATCC 39727 was found to be resistant to penicillins, but its glycopeptide resistance was diminished in the presence of penicillin G, which inhibits VanYnactivity. The heterologous expression ofvanHatAatXatincreased A40926 resistance inNonomuraeasp. ATCC 39727 but did not increase antibiotic production, indicating that the level of antibiotic production is not directly determined by the level of resistance. ThevanYn-based self-resistance inNonomuraeasp. ATCC 39727 resembles the glycopeptide resistance mechanism described recently in mutants ofEnterococcus faeciumselectedin vitrofor high-level resistance to glycopeptides and penicillins.


AIChE Journal ◽  
2018 ◽  
Vol 64 (12) ◽  
pp. 4308-4318 ◽  
Author(s):  
Marco A. Rivas ◽  
Valentine C. Courouble ◽  
Miranda C. Baker ◽  
David L. Cookmeyer ◽  
Kristen E. Fiore ◽  
...  

2022 ◽  
Vol 71 (1) ◽  
Author(s):  
Bailey F. Keefe ◽  
Luiz E. Bermudez

Introduction. Pulmonary infections caused by organisms of the Mycobacterium abscessus complex are increasingly prevalent in populations at risk, such as patients with cystic fibrosis, bronchiectasis and emphysema. Hypothesis. M. abscessus infection of the lung is not observed in immunocompetent individuals, which raises the possibility that the compromised lung environment is a suitable niche for the pathogen to thrive in due to the overproduction of mucus and high amounts of host cell lysis. Aim. Evaluate the ability of M. abscessus to form biofilm and grow utilizing in vitro conditions as seen in immunocompromised lungs of patients. Methodology. We compared biofilm formation and protein composition in the presence and absence of synthetic cystic fibrosis medium (SCFM) and evaluated the bacterial growth when exposed to human DNA. Results. M. abscessus is capable of forming biofilm in SCFM. By eliminating single components found in the medium, it became clear that magnesium works as a signal for the biofilm formation, and chelation of the divalent cations resulted in the suppression of biofilm formation. Investigation of the specific proteins expressed in the presence of SCFM and in the presence of SCFM lacking magnesium revealed many different proteins between the conditions. M. abscessus also exhibited growth in SCFM and in the presence of host cell DNA, although the mechanism of DNA utilization remains unclear. Conclusions. In vitro conditions mimicking the airways of patients with cystic fibrosis appear to facilitate M. abscessus establishment of infection, and elimination of magnesium from the environment may affect the ability of the pathogen to establish infection.


2019 ◽  
Vol 47 (12) ◽  
pp. 6369-6385
Author(s):  
Jia-Yi Fan ◽  
Qian Huang ◽  
Quan-Quan Ji ◽  
En-Duo Wang

Abstract Transfer RNAs (tRNAs) are divided into two types, type I with a short variable loop and type II with a long variable loop. Aminoacylation of type I or type II tRNALeu is catalyzed by their cognate leucyl-tRNA synthetases (LeuRSs). However, in Streptomyces coelicolor, there are two types of tRNALeu and only one LeuRS (ScoLeuRS). We found that the enzyme could leucylate both types of ScotRNALeu, and had a higher catalytic efficiency for type II ScotRNALeu(UAA) than for type I ScotRNALeu(CAA). The results from tRNA and enzyme mutagenesis showed that ScoLeuRS did not interact with the canonical discriminator A73. The number of nucleotides, rather than the type of base of the variable loop in the two types of ScotRNALeus, was determined as important for aminoacylation. In vitro and in vivo assays showed that the tertiary structure formed by the D-loop and TψC-loop is more important for ScotRNALeu(UAA). We showed that the leucine-specific domain (LSD) of ScoLeuRS could help LeuRS, which originally only leucylates type II tRNALeu, to aminoacylate type I ScotRNALeu(CAA) and identified the crucial amino acid residues at the C-terminus of the LSD to recognize type I ScotRNALeu(CAA). Overall, our findings identified a rare recognition mechanism of LeuRS to tRNALeu.


2012 ◽  
Vol 79 (5) ◽  
pp. 1639-1645 ◽  
Author(s):  
Josie E. Parker ◽  
Andrew G. S. Warrilow ◽  
Hans J. Cools ◽  
Bart A. Fraaije ◽  
John A. Lucas ◽  
...  

ABSTRACTProthioconazole is a new triazolinthione fungicide used in agriculture. We have usedCandida albicansCYP51 (CaCYP51) to investigate thein vitroactivity of prothioconazole and to consider the use of such compounds in the medical arena. Treatment ofC. albicanscells with prothioconazole, prothioconazole-desthio, and voriconazole resulted in CYP51 inhibition, as evidenced by the accumulation of 14α-methylated sterol substrates (lanosterol and eburicol) and the depletion of ergosterol. We then compared the inhibitor binding properties of prothioconazole, prothioconazole-desthio, and voriconazole with CaCYP51. We observed that prothioconazole-desthio and voriconazole bind noncompetitively to CaCYP51 in the expected manner of azole antifungals (with type II inhibitors binding to heme as the sixth ligand), while prothioconazole binds competitively and does not exhibit classic inhibitor binding spectra. Inhibition of CaCYP51 activity in a cell-free assay demonstrated that prothioconazole-desthio is active, whereas prothioconazole does not inhibit CYP51 activity. Extracts fromC. albicansgrown in the presence of prothioconazole were found to contain prothioconazole-desthio. We conclude that the antifungal action of prothioconazole can be attributed to prothioconazole-desthio.


2012 ◽  
Vol 78 (18) ◽  
pp. 6647-6655 ◽  
Author(s):  
Yu Zhang ◽  
Jiao An ◽  
Wei Ye ◽  
Guangyu Yang ◽  
Zhi-Gang Qian ◽  
...  

ABSTRACTThe phosphotriesterase-like lactonase (PLL) enzymes in the amidohydrolase superfamily hydrolyze various lactones and exhibit latent phosphotriesterase activities. These enzymes serve as attractive templates forin vitroevolution of neurotoxic organophosphates (OPs) with hydrolytic capabilities that can be used as bioremediation tools. Here, a thermostable PLL fromGeobacillus kaustophilusHTA426 (GkaP) was targeted for joint laboratory evolution with the aim of enhancing its catalytic efficiency against OP pesticides. By a combination of site saturation mutagenesis and whole-gene error-prone PCR approaches, several improved variants were isolated. The most active variant, 26A8C, accumulated eight amino acid substitutions and demonstrated a 232-fold improvement over the wild-type enzyme in reactivity (kcat/Km) for the OP pesticideethyl-paraoxon. Concomitantly, this variant showed a 767-fold decrease in lactonase activity with δ-decanolactone, imparting a specificity switch of 1.8 × 105-fold. 26A8C also exhibited high hydrolytic activities (19- to 497-fold) for several OP pesticides, including parathion, diazinon, and chlorpyrifos. Analysis of the mutagenesis sites on the GkaP structure revealed that most mutations are located in loop 8, which determines substrate specificity in the amidohydrolase superfamily. Molecular dynamics simulation shed light on why 26A8C lost its native lactonase activity and improved the promiscuous phosphotriesterase activity. These results permit us to obtain further insights into the divergent evolution of promiscuous enzymes and suggest that laboratory evolution of GkaP may lead to potential biological solutions for the efficient decontamination of neurotoxic OP compounds.


2020 ◽  
Vol 64 (9) ◽  
Author(s):  
Paola Sandra Mercuri ◽  
Roberto Esposito ◽  
Sylvie Blétard ◽  
Stefano Di Costanzo ◽  
Mariagrazia Perilli ◽  
...  

ABSTRACT Analysis of the genome sequence of Yersinia mollaretii ATCC 43969 identified the blaYEM gene, encoding YEM-1, a putative subclass B2 metallo-β-lactamase. The objectives of our work were to produce and purify YEM-1 and to complete its kinetic characterization. YEM-1 displayed the narrowest substrate range among known subclass B2 metallo-β-lactamases, since it can hydrolyze imipenem, but not other carbapenems, such as biapenem, meropenem, doripenem, and ertapenem, with high catalytic efficiency. A possible explanation of this activity profile is the presence of tyrosine at residue 67 (loop L1), threonine at residue 156 (loop L2), and serine at residue 236 (loop L3). We showed that replacement of Y67 broadened the activity profile of the enzyme for all carbapenems but still resulted in poor activity toward the other β-lactam classes.


Sign in / Sign up

Export Citation Format

Share Document