scholarly journals Methanogenesis in the digestive tract of the tropical millipedes Archispirostreptus gigas (Diplopoda, Spirostreptidae) and Epibolus pulchripes (Diplopoda, Pachybolidae)

Author(s):  
Terézia Horváthová ◽  
Vladimír Šustr ◽  
Alica Chroňáková ◽  
Stanislava Semanová ◽  
Kristina Lang ◽  
...  

Methanogens represent the final decomposition guild in anaerobic degradation of organic matter, occurring in digestive tract of various invertebrates. However, factors determining their community structure and activity in distinct gut sections is still debated. In this study, we focused on the tropical millipede species Archispirostreptus gigas (Diplopoda, Spirostreptidae) and Epibolus pulchripes (Diplopoda, Pachybolidae), which release considerable amounts of methane. We aimed to characterize relationships between physicochemical parameters, methane production rates, and methanogen community structure in the two major gut sections, midgut and hindgut. Microsensor measurements revealed that both sections were strictly anoxic, with reducing conditions prevailing in both millipedes. Hydrogen concentration culminated in anterior hindgut of E. pulchripes. In both species, the intestinal pH was significantly higher in the hindgut than in the midgut. An accumulation of acetate and formate in the gut indicated bacterial fermentation activities in the digestive tract of both species. Phylogenetic analysis of 16S rRNA genes showed a prevalence of Methanobrevibacter spp. (Methanobacteriales), accompanied by a small fraction of so far unclassified “Methanomethylophilaceae” (Methanomassiliicoccales), in both species, which suggests that methanogenesis is mostly hydrogenotrophic. We conclude that anoxic conditions, negative redox potential, and bacterial production of hydrogen and formate promotes the gut colonization by methanogens. The higher activities of methanogens in the hindgut are explained by the higher pH of this compartment and their association with ciliates, which are restricted to this compartment and present an additional source of methanogenic substrates. Importance Methane (CH4) is the second most important atmospheric greenhouse gas after CO2 and is believed to account for 17% of global warming. Methanogens are a diverse group of archaea and can be found in various anoxic habitats including digestive tract of plant-feeding animals. Termites, cockroaches, the larvae of scarab beetles, and millipedes are the only arthropods known to host methanogens and emit large amounts of methane. Millipedes are ranked third most important detritivores after termites and earthworms, and they are considered keystone species in many terrestrial ecosystems. Both methane producing and non-emitting species have been observed in millipedes, but what limits their methanogenic potential is not known. In the present study, we show that physico-chemical gut conditions and the distribution of symbiotic ciliates are important factors determining CH4 emission in millipedes. We also find great similarities to other methane-emitting arthropods, which might be associated with their similar plant-feeding habits.

Author(s):  
L A Gabbarini ◽  
E Figuerola ◽  
J P Frene ◽  
N B Robledo ◽  
F M Ibarbalz ◽  
...  

Abstract The effects of tillage on soil structure, physiology, and microbiota structure were studied in a long-term field experiment, with side-to-side plots, established to compare effects of conventional tillage (CT) vs. no-till (NT) agriculture. After 27 years, part of the field under CT was switched to NT and vice versa. Soil texture, soil enzymatic profiles, and the prokaryotic community structure (16S rRNA genes amplicon sequencing) were analysed at two soil depths (0–5, 5–10 cm) in samples taken 6, 18, and 30 months after switching tillage practices. Soil enzymatic activities were higher in NT than CT, and enzymatic profiles responded to the changes much earlier than the overall prokaryotic community structure. Beta diversity measurements of the prokaryotic community indicated that the levels of stratification observed in long-term NT soils were already recovered in the new NT soils thirty months after switching from CT to NT. Bacteria and Archaea OTUs, which responded to NT were associated with coarse soil fraction, SOC and C cycle enzymes while CT responders were related to fine soil fractions and S cycle enzymes. This study showed the potential of managing the soil prokaryotic community and soil health through changes in agricultural management practices.


2000 ◽  
Vol 66 (7) ◽  
pp. 2906-2913 ◽  
Author(s):  
Nico Boon ◽  
Johan Goris ◽  
Paul De Vos ◽  
Willy Verstraete ◽  
Eva M. Top

ABSTRACT A strain identified as Comamonas testosteroni I2 was isolated from activated sludge and found to be able to mineralize 3-chloroaniline (3-CA). During the mineralization, a yellow intermediate accumulated temporarily, due to the distalmeta-cleavage of chlorocatechol. This strain was tested for its ability to clean wastewater containing 3-CA upon inoculation into activated sludge. To monitor its survival, the strain was chromosomally marked with the gfp gene and designated I2gfp. After inoculation into a lab-scale semicontinuous activated-sludge (SCAS) system, the inoculated strain maintained itself in the sludge for at least 45 days and was present in the sludge flocs. After an initial adaptation period of 6 days, complete degradation of 3-CA was obtained during 2 weeks, while no degradation at all occurred in the noninoculated control reactor. Upon further operation of the SCAS system, only 50% 3-CA removal was observed. Denaturing gradient gel electrophoresis (DGGE) of 16S rRNA genes revealed a dynamic change in the microbial community structure of the activated sludge. The DGGE patterns of the noninoculated and the inoculated reactors evolved after 7 days to different clusters, which suggests an effect of strain inoculation on the microbial community structure. The results indicate that bioaugmentation, even with a strain originating from that ecosystem and able to effectively grow on a selective substrate, is not permanent and will probably require regular resupplementation.


2017 ◽  
Vol 83 (11) ◽  
Author(s):  
Ryan A. Blaustein ◽  
Graciela L. Lorca ◽  
Julie L. Meyer ◽  
Claudio F. Gonzalez ◽  
Max Teplitski

ABSTRACTStable associations between plants and microbes are critical to promoting host health and productivity. The objective of this work was to test the hypothesis that restructuring of the core microbiota may be associated with the progression of huanglongbing (HLB), the devastating citrus disease caused byLiberibacter asiaticus,Liberibacter americanus, andLiberibacter africanus. The microbial communities of leaves (n= 94) and roots (n= 79) from citrus trees that varied by HLB symptom severity, cultivar, location, and season/time were characterized with Illumina sequencing of 16S rRNA genes. The taxonomically rich communities contained abundant core members (i.e., detected in at least 95% of the respective leaf or root samples), some overrepresented site-specific members, and a diverse community of low-abundance variable taxa. The composition and diversity of the leaf and root microbiota were strongly associated with HLB symptom severity and location; there was also an association with host cultivar. The relative abundance ofLiberibacterspp. among leaf microbiota positively correlated with HLB symptom severity and negatively correlated with alpha diversity, suggesting that community diversity decreases as symptoms progress. Network analysis of the microbial community time series identified a mutually exclusive relationship betweenLiberibacterspp. and members of theBurkholderiaceae,Micromonosporaceae, andXanthomonadaceae. This work confirmed several previously described plant disease-associated bacteria, as well as identified new potential implications for biological control. Our findings advance the understanding of (i) plant microbiota selection across multiple variables and (ii) changes in (core) community structure that may be a precondition to disease establishment and/or may be associated with symptom progression.IMPORTANCEThis study provides a comprehensive overview of the core microbial community within the microbiomes of plant hosts that vary in extent of disease symptom progression. With 16S Illumina sequencing analyses, we not only confirmed previously described bacterial associations with plant health (e.g., potentially beneficial bacteria) but also identified new associations and potential interactions between certain bacteria and an economically important phytopathogen. The importance of core taxa within broader plant-associated microbial communities is discussed.


2007 ◽  
Vol 73 (19) ◽  
pp. 6089-6097 ◽  
Author(s):  
Sylvain Bordenave ◽  
María Soledad Goñi-Urriza ◽  
Pierre Caumette ◽  
Robert Duran

ABSTRACT The effects of petroleum contamination on the bacterial community of a pristine microbial mat from Salins-de-Giraud (Camargue, France) have been investigated. Mats were maintained as microcosms and contaminated with no. 2 fuel oil from the wreck of the Erika. The evolution of the complex bacterial community was monitored by combining analyses based on 16S rRNA genes and their transcripts. 16S rRNA gene-based terminal restriction fragment length polymorphism (T-RFLP) analyses clearly showed the effects of the heavy fuel oil after 60 days of incubation. At the end of the experiment, the initial community structure was recovered, illustrating the resilience of this microbial ecosystem. In addition, the responses of the metabolically active bacterial community were evaluated by T-RFLP and clone library analyses based on 16S rRNA. Immediately after the heavy fuel oil was added to the microcosms, the structure of the active bacterial community was modified, indicating a rapid microbial mat response. Members of the Gammaproteobacteria were initially dominant in the contaminated microcosms. Pseudomonas and Acinetobacter were the main genera representative of this class. After 90 days of incubation, the Gammaproteobacteria were superseded by “Bacilli” and Alphaproteobacteria. This study shows the major changes that occur in the microbial mat community at different time periods following contamination. At the conclusion of the experiment, the RNA approach also demonstrated the resilience of the microbial mat community in resisting environmental stress resulting from oil pollution.


2001 ◽  
Vol 67 (4) ◽  
pp. 1893-1901 ◽  
Author(s):  
Gesche Braker ◽  
Héctor L. Ayala-del-Rı́o ◽  
Allan H. Devol ◽  
Andreas Fesefeldt ◽  
James M. Tiedje

ABSTRACT Steep vertical gradients of oxidants (O2 and NO3 −) in Puget Sound and Washington continental margin sediments indicate that aerobic respiration and denitrification occur within the top few millimeters to centimeters. To systematically explore the underlying communities of denitrifiers,Bacteria, and Archaea along redox gradients at distant geographic locations, nitrite reductase (nirS) genes and bacterial and archaeal 16S rRNA genes (rDNAs) were PCR amplified and analyzed by terminal restriction fragment length polymorphism (T-RFLP) analysis. The suitablility of T-RFLP analysis for investigating communities of nirS-containing denitrifiers was established by the correspondence of dominant terminal restriction fragments (T-RFs) of nirS to computer-simulated T-RFs ofnirS clones. These clones belonged to clusters II, III, and IV from the same cores and were analyzed in a previous study (G. Braker, J. Zhou, L. Wu, A. H. Devol, and J. M. Tiedje, Appl. Environ. Microbiol. 66:2096–2104, 2000). T-RFLP analysis ofnirS and bacterial rDNA revealed a high level of functional and phylogenetic diversity, whereas the level of diversity ofArchaea was lower. A comparison of T-RFLPs based on the presence or absence of T-RFs and correspondence analysis based on the frequencies and heights of T-RFs allowed us to group sediment samples according to the sampling location and thus clearly distinguish Puget Sound and the Washington margin populations. However, changes in community structure within sediment core sections during the transition from aerobic to anaerobic conditions were minor. Thus, within the top layers of marine sediments, redox gradients seem to result from the differential metabolic activities of populations of similar communities, probably through mixing by marine invertebrates rather than from the development of distinct communities.


2015 ◽  
Vol 82 (3) ◽  
pp. 778-787 ◽  
Author(s):  
Yu-Xiang Yang ◽  
Chun-Long Mu ◽  
Zhen Luo ◽  
Wei-Yun Zhu

ABSTRACTBromochloromethane (BCM), an inhibitor of methanogenesis, has been used in animal production. However, little is known about its impact on the intestinal microbiota and metabolic patterns. The present study aimed to investigate the effect of BCM on the colonic bacterial community and metabolism by establishing a Wistar rat model. Twenty male Wistar rats were randomly divided into two groups (control and treated with BCM) and raised for 6 weeks. Bacterial fermentation products in the cecum were determined, and colonic methanogens and sulfate-reducing bacteria (SRB) were quantified. The colonic microbiota was analyzed by pyrosequencing of the 16S rRNA genes, and metabolites were profiled by gas chromatography and mass spectrometry. The results showed that BCM did not affect body weight and feed intake, but it did significantly change the intestinal metabolic profiles. Cecal protein fermentation was enhanced by BCM, as methylamine, putrescine, phenylethylamine, tyramine, and skatole were significantly increased. Colonic fatty acid and carbohydrate concentrations were significantly decreased, indicating the perturbation of lipid and carbohydrate metabolism by BCM. BCM treatment decreased the abundance of methanogen populations, while SRB were increased in the colon. BCM did not affect the total colonic bacterial counts but significantly altered the bacterial community composition by decreasing the abundance of actinobacteria, acidobacteria, and proteobacteria. The results demonstrated that BCM treatment significantly altered the microbiotic and metabolite profiles in the intestines, which may provide further information on the use of BCM in animal production.


2021 ◽  
Vol 12 ◽  
Author(s):  
Li Ma ◽  
Geng Wu ◽  
Jian Yang ◽  
Liuqin Huang ◽  
Dorji Phurbu ◽  
...  

Investigating the distribution of hydrogen-producing bacteria (HPB) is of great significance to understanding the source of biological hydrogen production in geothermal environments. Here, we explored the compositions of HPB populations in the sediments of hot springs from the Daggyai, Quzhuomu, Quseyongba, and Moluojiang geothermal zones on the Tibetan Plateau, with the use of Illumina MiSeq high-throughput sequencing of 16S rRNA genes and hydA genes. In the present study, the hydA genes were successfully amplified from the hot springs with a temperature of 46–87°C. The hydA gene phylogenetic analysis showed that the top three phyla of the HPB populations were Bacteroidetes (14.48%), Spirochaetes (14.12%), and Thermotogae (10.45%), while Proteobacteria were absent in the top 10 of the HPB populations, although Proteobacteria were dominant in the 16S rRNA gene sequences. Canonical correspondence analysis results indicate that the HPB community structure in the studied Tibetan hot springs was correlated with various environmental factors, such as temperature, pH, and elevation. The HPB community structure also showed a spatial distribution pattern; samples from the same area showed similar community structures. Furthermore, one HPB isolate affiliated with Firmicutes was obtained and demonstrated the capacity of hydrogen production. These results are important for us to understand the distribution and function of HPB in hot springs.


2020 ◽  
Vol 2020 ◽  
pp. 1-8 ◽  
Author(s):  
Christian Apolinaris Lombogia ◽  
Max Tulung ◽  
Jimmy Posangi ◽  
Trina Ekawati Tallei

Understanding the honeybee gut bacteria is an essential aspect as honeybees are the primary pollinators of many crops. In this study, the honeybee-associated gut bacteria were investigated by targeting the V3-V4 region of 16S rRNA genes using the Illumina MiSeq. The adult worker was captured in an urban area in a dense settlement. In total, 83,018 reads were obtained, revealing six phyla from 749 bacterial operational taxonomic units (OTUs). The gut was dominated by Proteobacteria (58% of the total reads, including Enterobacteriaceae 28.2%, Erwinia 6.43%, and Klebsiella 4.90%), Firmicutes (29% of the total reads, including Lactococcus garvieae 13.45%, Lactobacillus spp. 8.19%, and Enterococcus spp. 4.47%), and Actinobacteria (8% of the total reads, including Bifidobacterium spp. 7.96%). Many of these bacteria belong to the group of lactic acid bacteria (LAB), which was claimed to be composed of beneficial bacteria involved in maintaining a healthy host. The honeybee was identified as Apis nigrocincta based on an identity BLAST search of its COI region. This study is the first report on the gut microbial community structure and composition of A. nigrocincta from Indonesia.


2009 ◽  
Vol 76 (3) ◽  
pp. 757-768 ◽  
Author(s):  
Brandon K. Swan ◽  
Christopher J. Ehrhardt ◽  
Kristen M. Reifel ◽  
Lilliana I. Moreno ◽  
David L. Valentine

ABSTRACT Sulfidic, anoxic sediments of the moderately hypersaline Salton Sea contain gradients in salinity and carbon that potentially structure the sedimentary microbial community. We investigated the abundance, community structure, and diversity of Bacteria and Archaea along these gradients to further distinguish the ecologies of these domains outside their established physiological range. Quantitative PCR was used to enumerate 16S rRNA gene abundances of Bacteria, Archaea, and Crenarchaeota. Community structure and diversity were evaluated by terminal restriction fragment length polymorphism (T-RFLP), quantitative analysis of gene (16S rRNA) frequencies of dominant microorganisms, and cloning and sequencing of 16S rRNA. Archaea were numerically dominant at all depths and exhibited a lesser response to environmental gradients than that of Bacteria. The relative abundance of Crenarchaeota was low (0.4 to 22%) at all depths but increased with decreased carbon content and increased salinity. Salinity structured the bacterial community but exerted no significant control on archaeal community structure, which was weakly correlated with total carbon. Partial sequencing of archaeal 16S rRNA genes retrieved from three sediment depths revealed diverse communities of Euryarchaeota and Crenarchaeota, many of which were affiliated with groups previously described from marine sediments. The abundance of these groups across all depths suggests that many putative marine archaeal groups can tolerate elevated salinity (5.0 to 11.8% [wt/vol]) and persist under the anaerobic conditions present in Salton Sea sediments. The differential response of archaeal and bacterial communities to salinity and carbon patterns is consistent with the hypothesis that adaptations to energy stress and availability distinguish the ecologies of these domains.


Sign in / Sign up

Export Citation Format

Share Document