scholarly journals Borrelia afzelii infection in the rodent host has dramatic effects on the bacterial microbiome of Ixodes ricinus ticks

Author(s):  
Phineas T. Hamilton ◽  
Elodie Maluenda ◽  
Anouk Sarr ◽  
Alessandro Belli ◽  
Georgia Hurry ◽  
...  

The microbiome of blood-sucking arthropods can shape their competence to acquire and maintain infections with vector-borne pathogens. We used a controlled study to investigate the interactions between Borrelia afzelii , which causes Lyme disease in Europe, and the bacterial microbiome of Ixodes ricinus , its primary tick vector. We applied a surface sterilization treatment to I. ricinus eggs to produce dysbiosed tick larvae that had a much lower bacterial abundance and a changed bacterial microbiome compared to the control larvae. Dysbiosed and control larvae were fed on B. afzelii -infected mice and uninfected control mice and the engorged larvae were left to molt into nymphs, which were tested for B. afzelii infection and their bacterial microbiome by 16S rRNA amplicon sequencing. Surprisingly, larval dysbiosis had no effect on the vector competence of I. ricinus for B. afzelii , as the nymphal infection prevalence and the nymphal spirochete load were the same between the dysbiosed group and the control group. The strong effect of egg surface sterilization on the tick bacterial microbiome largely disappeared once the larvae molted into nymphs. The most important determinant of the bacterial microbiome of I. ricinus nymphs was the B. afzelii infection status of the mouse on which the nymphs had fed as larvae. Nymphs that had taken their larval blood meal from an infected mouse had a less abundant but more diverse bacterial microbiome compared to control nymphs. Our study demonstrates that vector-borne infections in the vertebrate host shape the microbiome of the arthropod vector. IMPORTANCE Many blood-sucking arthropods transmit pathogens that cause infectious disease. For example, Ixodes ricinus ticks transmit the bacterium Borrelia afzelii , which causes Lyme disease in humans. Ticks also have a microbiome, which can influence their ability to acquire and transmit tick-borne pathogens like B. afzelii . We sterilized I. ricinus eggs with bleach, and the tick larvae that hatched from these eggs had a dramatically reduced and changed bacterial microbiome compared to control larvae. These larvae were fed on B. afzelii -infected mice and the resultant nymphs were tested for B. afzelii and their bacterial microbiome. We found that our manipulation of the bacterial microbiome had no effect on the ability of the tick larvae to acquire and maintain populations of B. afzelii . In contrast, we found that B. afzelii infection had dramatic effects on the bacterial microbiome of I. ricinus nymphs. Our study demonstrates that infections in the vertebrate host can shape the tick microbiome.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Georgia Hurry ◽  
Elodie Maluenda ◽  
Anouk Sarr ◽  
Alessandro Belli ◽  
Phineas T. Hamilton ◽  
...  

AbstractArthropod vectors carry vector-borne pathogens that cause infectious disease in vertebrate hosts, and arthropod-associated microbiota, which consists of non-pathogenic microorganisms. Vector-borne pathogens and the microbiota can both influence the fitness of their arthropod vectors, and hence the epidemiology of vector-borne diseases. The bacterium Borrelia afzelii, which causes Lyme borreliosis in Europe, is transmitted among vertebrate reservoir hosts by Ixodes ricinus ticks, which also harbour a diverse microbiota of non-pathogenic bacteria. The purpose of this controlled study was to test whether B. afzelii and the tick-associated microbiota influence the fitness of I. ricinus. Eggs obtained from field-collected adult female ticks were surface sterilized (with bleach and ethanol), which reduced the abundance of the bacterial microbiota in the hatched I. ricinus larvae by 28-fold compared to larvae that hatched from control eggs washed with water. The dysbiosed and control larvae were subsequently fed on B. afzelii-infected or uninfected control mice, and the engorged larvae were left to moult into nymphs under laboratory conditions. I. ricinus larvae that fed on B. afzelii-infected mice had a significantly faster larva-to-nymph moulting time compared to larvae that fed on uninfected control mice, but the effect was small (2.4% reduction) and unlikely to be biologically significant. We found no evidence that B. afzelii infection or reduction of the larval microbiota influenced the four other life history traits of the immature I. ricinus ticks, which included engorged larval weight, unfed nymphal weight, larva-to-nymph moulting success, and immature tick survival. A retrospective power analysis found that our sampling effort had sufficient power (> 80%) to detect small effects (differences of 5% to 10%) of our treatments. Under the environmental conditions of this study, we conclude that B. afzelii and the egg surface microbiota had no meaningful effects on tick fitness and hence on the R0 of Lyme borreliosis.


Parasitology ◽  
2000 ◽  
Vol 121 (3) ◽  
pp. 297-302 ◽  
Author(s):  
F.-R. MATUSCHKA ◽  
T. W. SCHINKEL ◽  
B. KLUG ◽  
A. SPIELMAN ◽  
D. RICHTER

To determine whether rabbits may serve as reservoir hosts for Lyme disease spirochaetes in Europe, we compared their competence as hosts for Borrelia afzelii, one of the most prevalent European spirochaetal variants, with that of the Mongolian jird. To infect rabbits or jirds, at least 3 nymphal or adult Ixodes ricinus ticks infected with spirochaetes fed to repletion on each animal. Whereas jirds readily acquired tick-borne Lyme disease spirochaetes and subsequently infected vector ticks, rabbits exposed to tick-borne spirochaetes rarely became infectious to ticks. Only the rabbit that was infectious to ticks developed an antibody response. To the extent that I. ricinus ticks feed on European rabbits, these mammals may be zooprophylactic by diverting vector ticks from more suitable reservoir competent hosts.


2018 ◽  
Vol 285 (1890) ◽  
pp. 20181804 ◽  
Author(s):  
Dolores Genné ◽  
Anouk Sarr ◽  
Andrea Gomez-Chamorro ◽  
Jonas Durand ◽  
Claire Cayol ◽  
...  

Multiple-strain pathogens often establish mixed infections inside the host that result in competition between strains. In vector-borne pathogens, the competitive ability of strains must be measured in both the vertebrate host and the arthropod vector to understand the outcome of competition. Such studies could reveal the existence of trade-offs in competitive ability between different host types. We used the tick-borne bacterium Borrelia afzelii to test for competition between strains in the rodent host and the tick vector, and to test for a trade-off in competitive ability between these two host types. Mice were infected via tick bite with either one or two strains, and these mice were subsequently used to create ticks with single or mixed infections. Competition in the rodent host reduced strain-specific host-to-tick transmission and competition in the tick vector reduced the abundance of both strains. The strain that was competitively superior in host-to-tick transmission was competitively inferior with respect to bacterial abundance in the tick. This study suggests that in multiple-strain vector-borne pathogens there are trade-offs in competitive ability between the vertebrate host and the arthropod vector. Such trade-offs could play an important role in the coexistence of pathogen strains.


2017 ◽  
Vol 10 (1) ◽  
Author(s):  
Maxime Jacquet ◽  
Dolores Genné ◽  
Alessandro Belli ◽  
Elodie Maluenda ◽  
Anouk Sarr ◽  
...  

Parasitology ◽  
1998 ◽  
Vol 116 (S1) ◽  
pp. S65-S72 ◽  
Author(s):  
P. A. Nuttall

SummaryReciprocal interactions of parasites transmitted by blood-sucking arthropod vectors have been studied primarily at the parasite–host and parasite–vector interface. The third component of this parasite triangle, the vector–host interface, has been largely ignored. Now there is growing realization that reciprocal interactions between arthropod vectors and their vertebrate hosts play a pivotal role in the survival of arthropod-borne viruses, bacteria, and protozoa. The vector–host interface is the site where the haematophagous arthropod feeds. To obtain a blood meal, the vector must overcome the host's inflammatory, haemostatic, and immune responses. This problem is greatest for ixodid ticks which may imbibe as much as 15 ml blood whilst continuously attached to their host for 10 days or more. To feed successfully, the interface between tick and host becomes a battle between the host's mechanisms for combating the tick and the tick's armoury of bioactive proteins and other chemicals which it secretes, via saliva, into the feeding lesion formed in the host's skin. Parasites entering this battlefield encounter a privileged site in their vertebrate host that has been profoundly modified by the pharmacological activities of their vector's saliva. For example, ticks suppress natural killer cells and interferons, both of which have potent antiviral activities. Not surprisingly, vector-borne parasites exploit the immunomodulated feeding site to promote their transmission and infection. Certain tick-borne viruses are so successful at this that they are transmitted from one infected tick, through the vertebrate host to a co-feeding uninfected tick, without a detectable viraemia (virus circulating in the host's blood), and with no untoward effect on the host. When such viruses do have an adverse effect on the host, they may impede their vectors' feeding. Thus important interactions between ticks and tick-borne parasites are displaced to the interface with their vertebrate host - the skin site of blood-feeding and infection.


2000 ◽  
Vol 78 (12) ◽  
pp. 2061-2078 ◽  
Author(s):  
Richard S Ostfeld ◽  
Felicia Keesing

This is a critical evaluation of the influence of species diversity within communities of vertebrates on the risk of human exposure to vector-borne zoonoses. Vertebrates serve as natural reservoirs of many disease agents (viral, bacterial, protozoal) that are transmitted to humans by blood-feeding arthropod vectors. We describe the natural history of the Lyme disease zoonosis to illustrate interactions among pathogens, vectors, vertebrate hosts, and risk to humans. We then describe how the presence of a diverse assemblage of vertebrates can dilute the impact of the principal reservoir (the white-footed mouse, Peromyscus leucopus) of Lyme disease spirochetes (Borrelia burgdorferi), thereby reducing the disease risk to humans. Exploring the logic of what we call the dilution effect reveals four conditions that are necessary for it to apply generally to vector-borne zoonoses: (1) the feeding habits of the vector are generalized; (2) the pathogen is acquired by the vector from hosts (as opposed to exclusively transovarial transmission); (3) reservoir competence (the ability of a particular host species to infect a vector) varies among host species; and (4) the most competent reservoir host tends to be a community dominant, as defined by the proportion of the tick population fed by that species. When these conditions are met, vertebrate communities with high species diversity will contain a greater proportion of incompetent reservoir hosts that deflect vector meals away from the most competent reservoirs, thereby reducing infection prevalence and disease risk. Incorporating the likelihood that the abundance of competent reservoirs is reduced in more diverse communities, owing to the presence of predators and competitors, reinforces the impact of the dilution effect on the density of infected vectors. A review of the literature reveals the generality, though not the universality, of these conditions, which suggests that the effects of diversity on disease risk may be widespread. Issues in need of further exploration include (i) the relative importance of diversity per se versus fluctuating numbers of particular species; (ii) the relevance of species richness versus evenness to the dilution effect; (iii) whether the dilution effect operates at both local and regional scales; and (iv) the shape of empirically determined curves relating diversity to measures of disease risk. Further studies linking community ecology with epidemiology are warranted.


2018 ◽  
Vol 62 (3) ◽  
pp. 275-280 ◽  
Author(s):  
Marcin Weiner ◽  
Wioletta Żukiewicz-Sobczak ◽  
Małgorzata Tokarska-Rodak ◽  
Dorota Plewik ◽  
Anna Pańczuk ◽  
...  

AbstractIntroductionLyme borreliosis/Lyme disease is caused by Borrelia burgdorferi and is one of the most common vector-borne diseases transmitted by ticks.Material and MethodsA total of 136 Ixodes ricinus ticks, collected in the Ternopil (Ukraine) region, including 126 adults (70 females and 56 males), and 10 nymphs were examined. The identification of the species and their developmental form was based on morphological characteristics.ResultsPCR with B5S-Bor and 23S-Bor primers resulted in Borrelia burgdorferi sensu lato DNA amplification among six ticks (4.4%). The detailed analysis based on the DNA sequencing showed the presence of DNA of Borrelia afzelii in four samples; the remaining two represented Borrelia burgdorferi sensu lato complex, although their genospecies were not determined. The research confirmed the dominance of Borrelia afzelii genospecies in the ticks from Ukraine.ConclusionIt seems reasonable to undertake similar research in ticks from other regions of Ukraine. Knowledge in this field can be useful for public health and planning the prevention of tick-borne diseases.


2021 ◽  
Vol 11 ◽  
Author(s):  
Sazzad Mahmood ◽  
Radek Sima ◽  
Veronika Urbanova ◽  
Jos J. A. Trentelman ◽  
Nicolas Krezdorn ◽  
...  

Lyme borreliosis is an emerging tick-borne disease caused by spirochetes Borrelia burgdorferi sensu lato. In Europe, Lyme borreliosis is predominantly caused by Borrelia afzelii and transmitted by Ixodes ricinus. Although Borrelia behavior throughout tick development is quite well documented, specific molecular interactions between Borrelia and the tick have not been satisfactorily examined. Here, we present the first transcriptomic study focused on the expression of tick midgut genes regulated by Borrelia. By using massive analysis of cDNA ends (MACE), we searched for tick transcripts expressed differentially in the midgut of unfed, 24h-fed, and fully fed I. ricinus nymphs infected with B. afzelii. In total, we identified 553 upregulated and 530 downregulated tick genes and demonstrated that B. afzelii interacts intensively with the tick. Technical and biological validations confirmed the accuracy of the transcriptome. The expression of five validated tick genes was silenced by RNA interference. Silencing of the uncharacterized protein (GXP_Contig_30818) delayed the infection progress and decreased infection prevalence in the target mice tissues. Silencing of other genes did not significantly affect tick feeding nor the transmission of B. afzelii, suggesting a possible role of these genes rather in Borrelia acquisition or persistence in ticks. Identification of genes and proteins exploited by Borrelia during transmission and establishment in a tick could help the development of novel preventive strategies for Lyme borreliosis.


Pathogens ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 281
Author(s):  
Cassidy Anderson ◽  
Catherine A. Brissette

Lyme disease (LD) has become the most common vector-borne illness in the northern hemisphere. The causative agent, Borrelia burgdorferi sensu lato, is capable of establishing a persistent infection within the host. This is despite the activation of both the innate and adaptive immune responses. B. burgdorferi utilizes several immune evasion tactics ranging from the regulation of surface proteins, tick saliva, antimicrobial peptide resistance, and the disabling of the germinal center. This review aims to cover the various methods by which B. burgdorferi evades detection and destruction by the host immune response, examining both the innate and adaptive responses. By understanding the methods employed by B. burgdorferi to evade the host immune response, we gain a deeper knowledge of B. burgdorferi pathogenesis and Lyme disease, and gain insight into how to create novel, effective treatments.


Sign in / Sign up

Export Citation Format

Share Document