scholarly journals Direct Interspecies Electron Transfer between Geobacter metallireducens and Methanosarcina barkeri

2014 ◽  
Vol 80 (15) ◽  
pp. 4599-4605 ◽  
Author(s):  
Amelia-Elena Rotaru ◽  
Pravin Malla Shrestha ◽  
Fanghua Liu ◽  
Beatrice Markovaite ◽  
Shanshan Chen ◽  
...  

ABSTRACTDirect interspecies electron transfer (DIET) is potentially an effective form of syntrophy in methanogenic communities, but little is known about the diversity of methanogens capable of DIET. The ability ofMethanosarcina barkerito participate in DIET was evaluated in coculture withGeobacter metallireducens. Cocultures formed aggregates that shared electrons via DIET during the stoichiometric conversion of ethanol to methane. Cocultures could not be initiated with a pilin-deficientG. metallireducensstrain, suggesting that long-range electron transfer along pili was important for DIET. Amendments of granular activated carbon permitted the pilin-deficientG. metallireducensisolates to share electrons withM. barkeri, demonstrating that this conductive material could substitute for pili in promoting DIET. WhenM. barkeriwas grown in coculture with the H2-producingPelobacter carbinolicus, incapable of DIET,M. barkeriutilized H2as an electron donor but metabolized little of the acetate thatP. carbinolicusproduced. This suggested that H2, but not electrons derived from DIET, inhibited acetate metabolism.P. carbinolicus-M. barkericocultures did not aggregate, demonstrating that, unlike DIET, close physical contact was not necessary for interspecies H2transfer.M. barkeriis the second methanogen found to accept electrons via DIET and the first methanogen known to be capable of using either H2or electrons derived from DIET for CO2reduction. Furthermore,M. barkeriis genetically tractable, making it a model organism for elucidating mechanisms by which methanogens make biological electrical connections with other cells.

2013 ◽  
Vol 79 (7) ◽  
pp. 2397-2404 ◽  
Author(s):  
Pravin Malla Shrestha ◽  
Amelia-Elena Rotaru ◽  
Zarath M. Summers ◽  
Minita Shrestha ◽  
Fanghua Liu ◽  
...  

ABSTRACTThe possibility that metatranscriptomic analysis could distinguish between direct interspecies electron transfer (DIET) and H2interspecies transfer (HIT) in anaerobic communities was investigated by comparing gene transcript abundance in cocultures in whichGeobacter sulfurreducenswas the electron-accepting partner for eitherGeobacter metallireducens, which performs DIET, orPelobacter carbinolicus, which relies on HIT. Transcript abundance forG. sulfurreducensuptake hydrogenase genes was 7-fold lower in cocultures withG. metallireducensthan in cocultures withP. carbinolicus, consistent with DIET and HIT, respectively, in the two cocultures. Transcript abundance for the pilus-associated cytochrome OmcS, which is essential for DIET but not for HIT, was 240-fold higher in the cocultures withG. metallireducensthan in cocultures withP. carbinolicus. The pilin genepilAwas moderately expressed despite a mutation that might be expected to represspilAexpression. Lower transcript abundance forG. sulfurreducensgenes associated with acetate metabolism in the cocultures withP. carbinolicuswas consistent with the repression of these genes by H2during HIT. Genes for the biogenesis of pili and flagella and severalc-type cytochrome genes were among the most highly expressed inG. metallireducens. Mutant strains that lacked the ability to produce pili, flagella, or the outer surfacec-type cytochrome encoded by Gmet_2896 were not able to form cocultures withG. sulfurreducens. These results demonstrate that there are unique gene expression patterns that distinguish DIET from HIT and suggest that metatranscriptomics may be a promising route to investigate interspecies electron transfer pathways in more-complex environments.


mBio ◽  
2011 ◽  
Vol 2 (4) ◽  
Author(s):  
Masahiko Morita ◽  
Nikhil S. Malvankar ◽  
Ashley E. Franks ◽  
Zarath M. Summers ◽  
Ludovic Giloteaux ◽  
...  

ABSTRACTMechanisms for electron transfer within microbial aggregates derived from an upflow anaerobic sludge blanket reactor converting brewery waste to methane were investigated in order to better understand the function of methanogenic consortia. The aggregates were electrically conductive, with conductivities 3-fold higher than the conductivities previously reported for dual-species aggregates ofGeobacterspecies in which the two species appeared to exchange electrons via interspecies electron transfer. The temperature dependence response of the aggregate conductance was characteristic of the organic metallic-like conductance previously described for the conductive pili ofGeobacter sulfurreducensand was inconsistent with electron conduction through minerals. Studies in which aggregates were incubated with high concentrations of potential electron donors demonstrated that the aggregates had no significant capacity for conversion of hydrogen to methane. The aggregates converted formate to methane but at rates too low to account for the rates at which that the aggregates syntrophically metabolized ethanol, an important component of the reactor influent.Geobacterspecies comprised 25% of 16S rRNA gene sequences recovered from the aggregates, suggesting thatGeobacterspecies may have contributed to some but probably not all of the aggregate conductivity. Microorganisms most closely related to the acetate-utilizingMethanosaeta conciliiaccounted for more than 90% of the sequences that could be assigned to methane producers, consistent with the poor capacity for hydrogen and formate utilization. These results demonstrate for the first time that methanogenic wastewater aggregates can be electrically conductive and suggest that direct interspecies electron transfer could be an important mechanism for electron exchange in some methanogenic systems.IMPORTANCEThe conversion of waste organic matter to methane is an important bioenergy strategy, and a similar microbial metabolism of complex organic matter in anaerobic soils and sediments plays an important role in the global carbon cycle. Studies with laboratory cultures have demonstrated that hydrogen or formate can serve as an electron shuttle between the microorganisms degrading organic compounds and methanogens. However, the importance of hydrogen and formate as intermediates in the conversion of organic matter to methane in natural communities is less clear. The possibility that microorganisms within some natural methanogenic aggregates may directly exchange electrons, rather than producing hydrogen or formate as an intermediary electron carrier, is a significant paradigm shift with implications for the modeling and design of anaerobic wastewater reactors and for understanding how methanogenic communities will respond to environmental perturbations.


2012 ◽  
Vol 78 (21) ◽  
pp. 7645-7651 ◽  
Author(s):  
Amelia-Elena Rotaru ◽  
Pravin M. Shrestha ◽  
Fanghua Liu ◽  
Toshiyuki Ueki ◽  
Kelly Nevin ◽  
...  

ABSTRACTDirect interspecies electron transfer (DIET) is an alternative to interspecies H2/formate transfer as a mechanism for microbial species to cooperatively exchange electrons during syntrophic metabolism. To understand what specific properties contribute to DIET, studies were conducted withPelobacter carbinolicus, a close relative ofGeobacter metallireducens, which is capable of DIET.P. carbinolicusgrew in coculture withGeobacter sulfurreducenswith ethanol as the electron donor and fumarate as the electron acceptor, conditions under whichG. sulfurreducensformed direct electrical connections withG. metallireducens. In contrast to the cell aggregation associated with DIET,P. carbinolicusandG. sulfurreducensdid not aggregate. Attempts to initiate cocultures with a genetically modified strain ofG. sulfurreducensincapable of both H2and formate utilization were unsuccessful, whereas cocultures readily grew with mutant strains capable of formate but not H2uptake or vice versa. The hydrogenase mutant ofG. sulfurreducenscompensated, in cocultures, with significantly increased formate dehydrogenase gene expression. In contrast, the transcript abundance of a hydrogenase gene was comparable in cocultures with that for the formate dehydrogenase mutant ofG. sulfurreducensor the wild type, suggesting that H2was the primary electron carrier in the wild-type cocultures. Cocultures were also initiated with strains ofG. sulfurreducensthat could not produce pili or OmcS, two essential components for DIET. The finding thatP. carbinolicusexchanged electrons withG. sulfurreducensvia interspecies transfer of H2/formate rather than DIET demonstrates that not all microorganisms that can grow syntrophically are capable of DIET and that closely related microorganisms may use significantly different strategies for interspecies electron exchange.


2017 ◽  
Vol 83 (9) ◽  
Author(s):  
Dawn E. Holmes ◽  
Pravin M. Shrestha ◽  
David J. F. Walker ◽  
Yan Dang ◽  
Kelly P. Nevin ◽  
...  

ABSTRACT The possibility that Methanothrix (formerly Methanosaeta) and Geobacter species cooperate via direct interspecies electron transfer (DIET) in terrestrial methanogenic environments was investigated in rice paddy soils. Genes with high sequence similarity to the gene for the PilA pilin monomer of the electrically conductive pili (e-pili) of Geobacter sulfurreducens accounted for over half of the PilA gene sequences in metagenomic libraries and 42% of the mRNA transcripts in RNA sequencing (RNA-seq) libraries. This abundance of e-pilin genes and transcripts is significant because e-pili can serve as conduits for DIET. Most of the e-pilin genes and transcripts were affiliated with Geobacter species, but sequences most closely related to putative e-pilin genes from genera such as Desulfobacterium, Deferribacter, Geoalkalibacter, and Desulfobacula, were also detected. Approximately 17% of all metagenomic and metatranscriptomic bacterial sequences clustered with Geobacter species, and the finding that Geobacter spp. were actively transcribing growth-related genes indicated that they were metabolically active in the soils. Genes coding for e-pilin were among the most highly transcribed Geobacter genes. In addition, homologs of genes encoding OmcS, a c-type cytochrome associated with the e-pili of G. sulfurreducens and required for DIET, were also highly expressed in the soils. Methanothrix species in the soils highly expressed genes for enzymes involved in the reduction of carbon dioxide to methane. DIET is the only electron donor known to support CO2 reduction in Methanothrix. Thus, these results are consistent with a model in which Geobacter species were providing electrons to Methanothrix species for methane production through electrical connections of e-pili. IMPORTANCE Methanothrix species are some of the most important microbial contributors to global methane production, but surprisingly little is known about their physiology and ecology. The possibility that DIET is a source of electrons for Methanothrix in methanogenic rice paddy soils is important because it demonstrates that the contribution that Methanothrix makes to methane production in terrestrial environments may extend beyond the conversion of acetate to methane. Furthermore, defined coculture studies have suggested that when Methanothrix species receive some of their energy from DIET, they grow faster than when acetate is their sole energy source. Thus, Methanothrix growth and metabolism in methanogenic soils may be faster and more robust than generally considered. The results also suggest that the reason that Geobacter species are repeatedly found to be among the most metabolically active microorganisms in methanogenic soils is that they grow syntrophically in cooperation with Methanothrix spp., and possibly other methanogens, via DIET.


mBio ◽  
2018 ◽  
Vol 9 (4) ◽  
Author(s):  
Toshiyuki Ueki ◽  
Kelly P. Nevin ◽  
Amelia-Elena Rotaru ◽  
Li-Ying Wang ◽  
Joy E. Ward ◽  
...  

ABSTRACTCytochrome-to-cytochrome electron transfer and electron transfer along conduits of multiple extracellular magnetite grains are often proposed as strategies for direct interspecies electron transfer (DIET) that do not require electrically conductive pili (e-pili). However, physical evidence for these proposed DIET mechanisms has been lacking. To investigate these possibilities further, we constructedGeobacter metallireducensstrain Aro-5, in which the wild-type pilin gene was replaced with thearo-5pilin gene that was previously shown to yield poorly conductive pili inGeobacter sulfurreducensstrain Aro-5.G. metallireducensstrain Aro-5 did not reduce Fe(III) oxide and produced only low current densities, phenotypes consistent with expression of poorly conductive pili. LikeG. sulfurreducensstrain Aro-5,G. metallireducensstrain Aro-5 displayed abundant outer surface cytochromes. Cocultures initiated with wild-typeG. metallireducensas the electron-donating strain andG. sulfurreducensstrain Aro-5 as the electron-accepting strain grew via DIET. However,G. metallireducensAro-5/G. sulfurreducenswild-type cocultures did not. Cocultures initiated with the Aro-5 strains of both species grew only when amended with granular activated carbon (GAC), a conductive material known to be a conduit for DIET. Magnetite could not substitute for GAC. The inability of the two Aro-5 strains to adapt for DIET in the absence of GAC suggests that there are physical constraints on establishing DIET solely through cytochrome-to-cytochrome electron transfer or along chains of magnetite. The finding that DIET is possible with electron-accepting partners that lack highly conductive pili greatly expands the range of potential electron-accepting partners that might participate in DIET.IMPORTANCEDIET is thought to be an important mechanism for interspecies electron exchange in natural anaerobic soils and sediments in which methane is either produced or consumed, as well as in some photosynthetic mats and anaerobic digesters converting organic wastes to methane. Understanding the potential mechanisms for DIET will not only aid in modeling carbon and electron flow in these geochemically significant environments but will also be helpful for interpreting meta-omic data from as-yet-uncultured microbes in DIET-based communities and for designing strategies to promote DIET in anaerobic digesters. The results demonstrate the need to develop a better understanding of the diversity of types of e-pili in the microbial world to identify potential electron-donating partners for DIET. Novel methods for recovering as-yet-uncultivated microorganisms capable of DIET in culture will be needed to further evaluate whether DIET is possible without e-pili in the absence of conductive materials such as GAC.


Sign in / Sign up

Export Citation Format

Share Document