scholarly journals Interspecies Electron Transfer via Hydrogen and Formate Rather than Direct Electrical Connections in Cocultures of Pelobacter carbinolicus and Geobacter sulfurreducens

2012 ◽  
Vol 78 (21) ◽  
pp. 7645-7651 ◽  
Author(s):  
Amelia-Elena Rotaru ◽  
Pravin M. Shrestha ◽  
Fanghua Liu ◽  
Toshiyuki Ueki ◽  
Kelly Nevin ◽  
...  

ABSTRACTDirect interspecies electron transfer (DIET) is an alternative to interspecies H2/formate transfer as a mechanism for microbial species to cooperatively exchange electrons during syntrophic metabolism. To understand what specific properties contribute to DIET, studies were conducted withPelobacter carbinolicus, a close relative ofGeobacter metallireducens, which is capable of DIET.P. carbinolicusgrew in coculture withGeobacter sulfurreducenswith ethanol as the electron donor and fumarate as the electron acceptor, conditions under whichG. sulfurreducensformed direct electrical connections withG. metallireducens. In contrast to the cell aggregation associated with DIET,P. carbinolicusandG. sulfurreducensdid not aggregate. Attempts to initiate cocultures with a genetically modified strain ofG. sulfurreducensincapable of both H2and formate utilization were unsuccessful, whereas cocultures readily grew with mutant strains capable of formate but not H2uptake or vice versa. The hydrogenase mutant ofG. sulfurreducenscompensated, in cocultures, with significantly increased formate dehydrogenase gene expression. In contrast, the transcript abundance of a hydrogenase gene was comparable in cocultures with that for the formate dehydrogenase mutant ofG. sulfurreducensor the wild type, suggesting that H2was the primary electron carrier in the wild-type cocultures. Cocultures were also initiated with strains ofG. sulfurreducensthat could not produce pili or OmcS, two essential components for DIET. The finding thatP. carbinolicusexchanged electrons withG. sulfurreducensvia interspecies transfer of H2/formate rather than DIET demonstrates that not all microorganisms that can grow syntrophically are capable of DIET and that closely related microorganisms may use significantly different strategies for interspecies electron exchange.

mBio ◽  
2018 ◽  
Vol 9 (4) ◽  
Author(s):  
Toshiyuki Ueki ◽  
Kelly P. Nevin ◽  
Amelia-Elena Rotaru ◽  
Li-Ying Wang ◽  
Joy E. Ward ◽  
...  

ABSTRACTCytochrome-to-cytochrome electron transfer and electron transfer along conduits of multiple extracellular magnetite grains are often proposed as strategies for direct interspecies electron transfer (DIET) that do not require electrically conductive pili (e-pili). However, physical evidence for these proposed DIET mechanisms has been lacking. To investigate these possibilities further, we constructedGeobacter metallireducensstrain Aro-5, in which the wild-type pilin gene was replaced with thearo-5pilin gene that was previously shown to yield poorly conductive pili inGeobacter sulfurreducensstrain Aro-5.G. metallireducensstrain Aro-5 did not reduce Fe(III) oxide and produced only low current densities, phenotypes consistent with expression of poorly conductive pili. LikeG. sulfurreducensstrain Aro-5,G. metallireducensstrain Aro-5 displayed abundant outer surface cytochromes. Cocultures initiated with wild-typeG. metallireducensas the electron-donating strain andG. sulfurreducensstrain Aro-5 as the electron-accepting strain grew via DIET. However,G. metallireducensAro-5/G. sulfurreducenswild-type cocultures did not. Cocultures initiated with the Aro-5 strains of both species grew only when amended with granular activated carbon (GAC), a conductive material known to be a conduit for DIET. Magnetite could not substitute for GAC. The inability of the two Aro-5 strains to adapt for DIET in the absence of GAC suggests that there are physical constraints on establishing DIET solely through cytochrome-to-cytochrome electron transfer or along chains of magnetite. The finding that DIET is possible with electron-accepting partners that lack highly conductive pili greatly expands the range of potential electron-accepting partners that might participate in DIET.IMPORTANCEDIET is thought to be an important mechanism for interspecies electron exchange in natural anaerobic soils and sediments in which methane is either produced or consumed, as well as in some photosynthetic mats and anaerobic digesters converting organic wastes to methane. Understanding the potential mechanisms for DIET will not only aid in modeling carbon and electron flow in these geochemically significant environments but will also be helpful for interpreting meta-omic data from as-yet-uncultured microbes in DIET-based communities and for designing strategies to promote DIET in anaerobic digesters. The results demonstrate the need to develop a better understanding of the diversity of types of e-pili in the microbial world to identify potential electron-donating partners for DIET. Novel methods for recovering as-yet-uncultivated microorganisms capable of DIET in culture will be needed to further evaluate whether DIET is possible without e-pili in the absence of conductive materials such as GAC.


2014 ◽  
Vol 80 (15) ◽  
pp. 4599-4605 ◽  
Author(s):  
Amelia-Elena Rotaru ◽  
Pravin Malla Shrestha ◽  
Fanghua Liu ◽  
Beatrice Markovaite ◽  
Shanshan Chen ◽  
...  

ABSTRACTDirect interspecies electron transfer (DIET) is potentially an effective form of syntrophy in methanogenic communities, but little is known about the diversity of methanogens capable of DIET. The ability ofMethanosarcina barkerito participate in DIET was evaluated in coculture withGeobacter metallireducens. Cocultures formed aggregates that shared electrons via DIET during the stoichiometric conversion of ethanol to methane. Cocultures could not be initiated with a pilin-deficientG. metallireducensstrain, suggesting that long-range electron transfer along pili was important for DIET. Amendments of granular activated carbon permitted the pilin-deficientG. metallireducensisolates to share electrons withM. barkeri, demonstrating that this conductive material could substitute for pili in promoting DIET. WhenM. barkeriwas grown in coculture with the H2-producingPelobacter carbinolicus, incapable of DIET,M. barkeriutilized H2as an electron donor but metabolized little of the acetate thatP. carbinolicusproduced. This suggested that H2, but not electrons derived from DIET, inhibited acetate metabolism.P. carbinolicus-M. barkericocultures did not aggregate, demonstrating that, unlike DIET, close physical contact was not necessary for interspecies H2transfer.M. barkeriis the second methanogen found to accept electrons via DIET and the first methanogen known to be capable of using either H2or electrons derived from DIET for CO2reduction. Furthermore,M. barkeriis genetically tractable, making it a model organism for elucidating mechanisms by which methanogens make biological electrical connections with other cells.


2018 ◽  
Vol 200 (19) ◽  
Author(s):  
Fernanda Jiménez Otero ◽  
Chi Ho Chan ◽  
Daniel R. Bond

ABSTRACTAt least five gene clusters in theGeobacter sulfurreducensgenome encode putative “electron conduits” implicated in electron transfer across the outer membrane, each containing a periplasmic multihemec-type cytochrome, integral outer membrane anchor, and outer membrane redox lipoprotein(s). Markerless single-gene-cluster deletions and all possible multiple-deletion combinations were constructed and grown with soluble Fe(III) citrate, Fe(III) and Mn(IV) oxides, and graphite electrodes poised at +0.24 V and −0.1 V versus the standard hydrogen electrode (SHE). Different gene clusters were necessary for reduction of each electron acceptor. During metal oxide reduction, deletion of the previously describedomcBCcluster caused defects, but deletion of additional components in an ΔomcBCbackground, such asextEFG, were needed to produce defects greater than 50% compared to findings with the wild type. Deletion of all five gene clusters abolished all metal reduction. During electrode reduction, only the ΔextABCDmutant had a severe growth defect at both redox potentials, while this mutation did not affect Fe(III) oxide, Mn(IV) oxide, or Fe(III) citrate reduction. Some mutants containing only one cluster were able to reduce particular terminal electron acceptors better than the wild type, suggesting routes for improvement by targeting specific electron transfer pathways. Transcriptomic comparisons between fumarate and electrode-based growth conditions showed all of theseextclusters to be constitutive, and transcriptional analysis of the triple-deletion strain containing onlyextABCDdetected no significant changes in expression of genes encoding known redox proteins or pilus components. These genetic experiments reveal new outer membrane conduit complexes necessary for growth ofG. sulfurreducens, depending on the available extracellular electron acceptor.IMPORTANCEGram-negative metal-reducing bacteria utilize electron conduits, chains of redox proteins spanning the outer membrane, to transfer electrons to the extracellular surface. Only one pathway for electron transfer across the outer membrane ofGeobacter sulfurreducenshas been linked to Fe(III) reduction. However,G. sulfurreducensis able to respire a wide array of extracellular substrates. Here we present the first combinatorial genetic analysis of five different electron conduits via creation of new markerless deletion strains and complementation vectors. Multiple conduit gene clusters appear to have overlapping roles, including two that have never been linked to metal reduction. Another recently described cluster (ExtABCD) was the only electron conduit essential during electrode reduction, a substrate of special importance to biotechnological applications of this organism.


mBio ◽  
2011 ◽  
Vol 2 (4) ◽  
Author(s):  
Masahiko Morita ◽  
Nikhil S. Malvankar ◽  
Ashley E. Franks ◽  
Zarath M. Summers ◽  
Ludovic Giloteaux ◽  
...  

ABSTRACTMechanisms for electron transfer within microbial aggregates derived from an upflow anaerobic sludge blanket reactor converting brewery waste to methane were investigated in order to better understand the function of methanogenic consortia. The aggregates were electrically conductive, with conductivities 3-fold higher than the conductivities previously reported for dual-species aggregates ofGeobacterspecies in which the two species appeared to exchange electrons via interspecies electron transfer. The temperature dependence response of the aggregate conductance was characteristic of the organic metallic-like conductance previously described for the conductive pili ofGeobacter sulfurreducensand was inconsistent with electron conduction through minerals. Studies in which aggregates were incubated with high concentrations of potential electron donors demonstrated that the aggregates had no significant capacity for conversion of hydrogen to methane. The aggregates converted formate to methane but at rates too low to account for the rates at which that the aggregates syntrophically metabolized ethanol, an important component of the reactor influent.Geobacterspecies comprised 25% of 16S rRNA gene sequences recovered from the aggregates, suggesting thatGeobacterspecies may have contributed to some but probably not all of the aggregate conductivity. Microorganisms most closely related to the acetate-utilizingMethanosaeta conciliiaccounted for more than 90% of the sequences that could be assigned to methane producers, consistent with the poor capacity for hydrogen and formate utilization. These results demonstrate for the first time that methanogenic wastewater aggregates can be electrically conductive and suggest that direct interspecies electron transfer could be an important mechanism for electron exchange in some methanogenic systems.IMPORTANCEThe conversion of waste organic matter to methane is an important bioenergy strategy, and a similar microbial metabolism of complex organic matter in anaerobic soils and sediments plays an important role in the global carbon cycle. Studies with laboratory cultures have demonstrated that hydrogen or formate can serve as an electron shuttle between the microorganisms degrading organic compounds and methanogens. However, the importance of hydrogen and formate as intermediates in the conversion of organic matter to methane in natural communities is less clear. The possibility that microorganisms within some natural methanogenic aggregates may directly exchange electrons, rather than producing hydrogen or formate as an intermediary electron carrier, is a significant paradigm shift with implications for the modeling and design of anaerobic wastewater reactors and for understanding how methanogenic communities will respond to environmental perturbations.


2013 ◽  
Vol 79 (7) ◽  
pp. 2397-2404 ◽  
Author(s):  
Pravin Malla Shrestha ◽  
Amelia-Elena Rotaru ◽  
Zarath M. Summers ◽  
Minita Shrestha ◽  
Fanghua Liu ◽  
...  

ABSTRACTThe possibility that metatranscriptomic analysis could distinguish between direct interspecies electron transfer (DIET) and H2interspecies transfer (HIT) in anaerobic communities was investigated by comparing gene transcript abundance in cocultures in whichGeobacter sulfurreducenswas the electron-accepting partner for eitherGeobacter metallireducens, which performs DIET, orPelobacter carbinolicus, which relies on HIT. Transcript abundance forG. sulfurreducensuptake hydrogenase genes was 7-fold lower in cocultures withG. metallireducensthan in cocultures withP. carbinolicus, consistent with DIET and HIT, respectively, in the two cocultures. Transcript abundance for the pilus-associated cytochrome OmcS, which is essential for DIET but not for HIT, was 240-fold higher in the cocultures withG. metallireducensthan in cocultures withP. carbinolicus. The pilin genepilAwas moderately expressed despite a mutation that might be expected to represspilAexpression. Lower transcript abundance forG. sulfurreducensgenes associated with acetate metabolism in the cocultures withP. carbinolicuswas consistent with the repression of these genes by H2during HIT. Genes for the biogenesis of pili and flagella and severalc-type cytochrome genes were among the most highly expressed inG. metallireducens. Mutant strains that lacked the ability to produce pili, flagella, or the outer surfacec-type cytochrome encoded by Gmet_2896 were not able to form cocultures withG. sulfurreducens. These results demonstrate that there are unique gene expression patterns that distinguish DIET from HIT and suggest that metatranscriptomics may be a promising route to investigate interspecies electron transfer pathways in more-complex environments.


2017 ◽  
Vol 83 (9) ◽  
Author(s):  
Dawn E. Holmes ◽  
Pravin M. Shrestha ◽  
David J. F. Walker ◽  
Yan Dang ◽  
Kelly P. Nevin ◽  
...  

ABSTRACT The possibility that Methanothrix (formerly Methanosaeta) and Geobacter species cooperate via direct interspecies electron transfer (DIET) in terrestrial methanogenic environments was investigated in rice paddy soils. Genes with high sequence similarity to the gene for the PilA pilin monomer of the electrically conductive pili (e-pili) of Geobacter sulfurreducens accounted for over half of the PilA gene sequences in metagenomic libraries and 42% of the mRNA transcripts in RNA sequencing (RNA-seq) libraries. This abundance of e-pilin genes and transcripts is significant because e-pili can serve as conduits for DIET. Most of the e-pilin genes and transcripts were affiliated with Geobacter species, but sequences most closely related to putative e-pilin genes from genera such as Desulfobacterium, Deferribacter, Geoalkalibacter, and Desulfobacula, were also detected. Approximately 17% of all metagenomic and metatranscriptomic bacterial sequences clustered with Geobacter species, and the finding that Geobacter spp. were actively transcribing growth-related genes indicated that they were metabolically active in the soils. Genes coding for e-pilin were among the most highly transcribed Geobacter genes. In addition, homologs of genes encoding OmcS, a c-type cytochrome associated with the e-pili of G. sulfurreducens and required for DIET, were also highly expressed in the soils. Methanothrix species in the soils highly expressed genes for enzymes involved in the reduction of carbon dioxide to methane. DIET is the only electron donor known to support CO2 reduction in Methanothrix. Thus, these results are consistent with a model in which Geobacter species were providing electrons to Methanothrix species for methane production through electrical connections of e-pili. IMPORTANCE Methanothrix species are some of the most important microbial contributors to global methane production, but surprisingly little is known about their physiology and ecology. The possibility that DIET is a source of electrons for Methanothrix in methanogenic rice paddy soils is important because it demonstrates that the contribution that Methanothrix makes to methane production in terrestrial environments may extend beyond the conversion of acetate to methane. Furthermore, defined coculture studies have suggested that when Methanothrix species receive some of their energy from DIET, they grow faster than when acetate is their sole energy source. Thus, Methanothrix growth and metabolism in methanogenic soils may be faster and more robust than generally considered. The results also suggest that the reason that Geobacter species are repeatedly found to be among the most metabolically active microorganisms in methanogenic soils is that they grow syntrophically in cooperation with Methanothrix spp., and possibly other methanogens, via DIET.


2014 ◽  
Vol 80 (14) ◽  
pp. 4331-4340 ◽  
Author(s):  
Jessica A. Smith ◽  
Pier-Luc Tremblay ◽  
Pravin Malla Shrestha ◽  
Oona L. Snoeyenbos-West ◽  
Ashley E. Franks ◽  
...  

ABSTRACTPrevious studies have suggested that the conductive pili ofGeobacter sulfurreducensare essential for extracellular electron transfer to Fe(III) oxides and for optimal long-range electron transport through current-producing biofilms. The KN400 strain ofG. sulfurreducensreduces poorly crystalline Fe(III) oxide more rapidly than the more extensively studied DL-1 strain. Deletion of the gene encoding PilA, the structural pilin protein, in strain KN400 inhibited Fe(III) oxide reduction. However, low rates of Fe(III) reduction were detected after extended incubation (>30 days) in the presence of Fe(III) oxide. After seven consecutive transfers, the PilA-deficient strain adapted to reduce Fe(III) oxide as fast as the wild type. Microarray, whole-genome resequencing, proteomic, and gene deletion studies indicated that this adaptation was associated with the production of larger amounts of thec-type cytochrome PgcA, which was released into the culture medium. It is proposed that the extracellular cytochrome acts as an electron shuttle, promoting electron transfer from the outer cell surface to Fe(III) oxides. The adapted PilA-deficient strain competed well with the wild-type strain when both were grown together on Fe(III) oxide. However, when 50% of the culture medium was replaced with fresh medium every 3 days, the wild-type strain outcompeted the adapted strain. A possible explanation for this is that the necessity to produce additional PgcA, to replace the PgcA being continually removed, put the adapted strain at a competitive disadvantage, similar to the apparent selection against electron shuttle-producing Fe(III) reducers in many anaerobic soils and sediments. Despite increased extracellular cytochrome production, the adapted PilA-deficient strain produced low levels of current, consistent with the concept that long-range electron transport throughG. sulfurreducensbiofilms is more effective via pili.


2017 ◽  
Author(s):  
Fernanda Jiménez Otero ◽  
Chi Ho Chan ◽  
Daniel R. Bond

AbstractAt least five gene clusters in the Geobacter sulfurreducens genome encode putative ‘electron conduits’ implicated in electron transfer across the outer membrane, each containing a periplasmic multiheme c-type cytochrome, integral outer membrane anchor, and outer membrane redox lipoprotein(s). Markerless single gene cluster deletions and all possible multiple deletion combinations were constructed and grown with soluble Fe(III) citrate, Fe(III)- and Mn(IV)-oxides, and graphite electrodes poised at +0.24 V and −0.1 V vs. SHE. Different gene clusters were necessary for reduction of each electron acceptor. During metal oxide reduction, deletion of the previously described omcBC cluster caused defects, but deletion of additional components in an ΔomcBC background, such as extEFG, were needed to produce defects greater than 50% compared to wild type. Deletion of all five gene clusters abolished all metal reduction. During electrode reduction, only the ΔextABCD mutant had a severe growth defect at both redox potentials, while this mutation did not affect Fe(III)-oxide, Mn(IV)-oxide, or Fe(III) citrate reduction. Some mutants containing only one cluster were able to reduce particular terminal electron acceptors better than wild type, suggesting routes for improvement by targeting specific electron transfer pathways. Transcriptomic comparisons between fumarate and electrode-based growth showed all of these ext clusters to be constitutive, and transcriptional analysis of the triple-deletion strain containing only extABCD detected no significant changes in expression of known redox proteins or pili components. These genetic experiments reveal new outer membrane conduit complexes necessary for growth of G. sulfurreducens, depending on the available extracellular electron acceptor.


2018 ◽  
Author(s):  
Fernanda Jiménez Otero ◽  
Chi Ho Chan ◽  
Daniel R Bond

At least five gene clusters in the Geobacter sulfurreducens genome encode putative ‘electron conduits’ implicated in electron transfer across the outer membrane, each containing a periplasmic multiheme c -type cytochrome, integral outer membrane anchor, and outer membrane redox lipoprotein(s). Markerless single gene cluster deletions and all possible multiple deletion combinations were constructed and grown with soluble Fe(III) citrate, Fe(III)- and Mn(IV)-oxides, and graphite electrodes poised at +0.24 V and -0.1 V vs. SHE. Different gene clusters were necessary for reduction of each electron acceptor. During metal oxide reduction, deletion of the previously described omcBC cluster caused defects, but deletion of additional components in an Δ omcBC background, such as extEFG , were needed to produce defects greater than 50% compared to wild type. Deletion of all five gene clusters abolished all metal reduction. During electrode reduction, only the Δ extABCD mutant had a severe growth defect at both redox potentials, while this mutation did not affect Fe(III)-oxide, Mn(IV)-oxide, or Fe(III) citrate reduction. Some mutants containing only one cluster were able to reduce particular terminal electron acceptors better than wild type, suggesting routes for improvement by targeting specific electron transfer pathways. Transcriptomic comparisons between fumarate and electrode-based growth showed all of these ext clusters to be constitutive, and transcriptional analysis of the triple-deletion strain containing only extABCD detected no significant changes in expression of known redox proteins or pili components. These genetic experiments reveal new outer membrane conduit complexes necessary for growth of G. sulfurreducens , depending on the available extracellular electron acceptor.


2016 ◽  
Vol 198 (19) ◽  
pp. 2643-2650 ◽  
Author(s):  
Boo Shan Tseng ◽  
Charlotte D. Majerczyk ◽  
Daniel Passos da Silva ◽  
Josephine R. Chandler ◽  
E. Peter Greenberg ◽  
...  

ABSTRACTMembers of the genusBurkholderiaare known to be adept at biofilm formation, which presumably assists in the survival of these organisms in the environment and the host. Biofilm formation has been linked to quorum sensing (QS) in several bacterial species. In this study, we characterizedBurkholderia thailandensisbiofilm development under flow conditions and sought to determine whether QS contributes to this process.B. thailandensisbiofilm formation exhibited an unusual pattern: the cells formed small aggregates and then proceeded to produce mature biofilms characterized by “dome” structures filled with biofilm matrix material. We showed that this process was dependent on QS.B. thailandensishas three acyl-homoserine lactone (AHL) QS systems (QS-1, QS-2, and QS-3). An AHL-negative strain produced biofilms consisting of cell aggregates but lacking the matrix-filled dome structures. This phenotype was rescued via exogenous addition of the three AHL signals. Of the threeB. thailandensisQS systems, we show that QS-1 is required for proper biofilm development, since abtaR1mutant, which is defective in QS-1 regulation, forms biofilms without these dome structures. Furthermore, our data show that the wild-type biofilm biomass, as well as the material inside the domes, stains with a fucose-binding lectin. ThebtaR1mutant biofilms, however, are negative for fucose staining. This suggests that the QS-1 system regulates the production of a fucose-containing exopolysaccharide in wild-type biofilms. Finally, we present data showing that QS ability during biofilm development produces a biofilm that is resistant to dispersion under stress conditions.IMPORTANCEThe saprophyteBurkholderia thailandensisis a close relative of the pathogenic bacteriumBurkholderia pseudomallei, the causative agent of melioidosis, which is contracted from its environmental reservoir. Since most bacteria in the environment reside in biofilms,B. thailandensisis an ideal model organism for investigating questions inBurkholderiaphysiology. In this study, we characterizedB. thailandensisbiofilm development and sought to determine if quorum sensing (QS) contributes to this process. Our work shows thatB. thailandensisproduces biofilms with unusual dome structures under flow conditions. Our findings suggest that these dome structures are filled with a QS-regulated, fucose-containing exopolysaccharide that may be involved in the resilience ofB. thailandensisbiofilms against changes in the nutritional environment.


Sign in / Sign up

Export Citation Format

Share Document