scholarly journals Stable Transformation of the ActinobacteriaFrankiaspp.

2019 ◽  
Vol 85 (15) ◽  
Author(s):  
Céline Pesce ◽  
Rediet Oshone ◽  
Sheldon G. Hurst ◽  
Victoria A. Kleiner ◽  
Louis S. Tisa

ABSTRACTA stable and efficient plasmid transfer system was developed for nitrogen-fixing symbiotic actinobacteria of the genusFrankia, a key first step in developing a genetic system. Four derivatives of the broad-host-range cloning vector pBBR1MCS were successfully introduced into differentFrankiastrains by a filter mating withEscherichia colistrain BW29427. Initially, plasmid pHKT1 that expresses green fluorescent protein (GFP) was introduced intoFrankia casuarinaestrain CcI3 at a frequency of 4.0 × 10−3, resulting in transformants that were tetracycline resistant and exhibited GFP fluorescence. The presence of the plasmid was confirmed by molecular approaches, including visualization on agarose gel and PCR. Several other pBBR1MCS plasmids were also introduced intoF. casuarinaestrain CcI3 and otherFrankiastrains at frequencies ranging from 10−2to 10−4, and the presence of the plasmids was confirmed by PCR. The plasmids were stably maintained for over 2 years and through passage in a plant host. As a proof of concept, a salt tolerance candidate gene from the highly salt-tolerantFrankiasp. strain CcI6 was cloned into pBBR1MCS-3. The resulting construct was introduced into the salt-sensitiveF. casuarinaestrain CcI3. Endpoint reverse transcriptase PCR (RT-PCR) showed that the gene was expressed inF. casuarinaestrain CcI3. The expression provided an increased level of salt tolerance for the transformant. These results represent stable plasmid transfer and exogenous gene expression inFrankiaspp., overcoming a major hurdle in the field. This step in the development of genetic tools inFrankiaspp. will open up new avenues for research on actinorhizal symbiosis.IMPORTANCEThe absence of genetic tools forFrankiaresearch has been a major hindrance to the associated field of actinorhizal symbiosis and the use of the nitrogen-fixing actinobacteria. This study reports on the introduction of plasmids intoFrankiaspp. and their functional expression of green fluorescent protein and a cloned gene. As the first step in developing genetic tools, this technique opens up the field to a wide array of approaches in an organism with great importance to and potential in the environment.

2013 ◽  
Vol 79 (7) ◽  
pp. 2218-2224 ◽  
Author(s):  
Jeffrey L. Bose ◽  
Paul D. Fey ◽  
Kenneth W. Bayles

ABSTRACTThebursa aurealistransposon has been used to create transposon insertion libraries ofBacillus anthracisandStaphylococcus aureus. To provide a set of genetic tools to enhance the utility of these libraries, we generated an allelic-exchange system that allows for the replacement of the transposon with useful genetic markers and fluorescent reporter genes. These tools were tested in the Nebraska Transposon Mutant Library (NTML), containing defined transposon insertions in 1,952 nonessentialS. aureusgenes. First, we generated a plasmid that allows researchers to replace the genes encoding green fluorescent protein (GFP) and erythromycin resistance in the transposon with a noncoding DNA fragment, leaving a markerless mutation within the chromosome. Second, we produced allelic-exchange plasmids to replace the transposon with alternate antibiotic resistance cassettes encoding tetracycline, kanamycin, and spectinomycin resistance, allowing for the simultaneous selection of multiple chromosomal mutations. Third, we generated a series of fluorescent reporter constructs that, after allelic exchange, generate transcriptional reporters encoding codon-optimized enhanced cyan fluorescent protein (ECFP), enhanced yellow fluorescent protein (EYFP), DsRed.T3(DNT), and eqFP650, as well as superfolder green fluorescent protein (sGFP). Overall, combining the NTML with this allelic-exchange system provides an unparalleled resource for the study ofS. aureus.


2017 ◽  
Vol 83 (8) ◽  
Author(s):  
Shireen Kotay ◽  
Weidong Chai ◽  
William Guilford ◽  
Katie Barry ◽  
Amy J. Mathers

ABSTRACT There have been an increasing number of reports implicating Gammaproteobacteria as often carrying genes of drug resistance from colonized sink traps to vulnerable hospitalized patients. However, the mechanism of transmission from the wastewater of the sink P-trap to patients remains poorly understood. Herein we report the use of a designated hand-washing sink lab gallery to model dispersion of green fluorescent protein (GFP)-expressing Escherichia coli from sink wastewater to the surrounding environment. We found no dispersion of GFP-expressing E. coli directly from the P-trap to the sink basin or surrounding countertop with coincident water flow from a faucet. However, when the GFP-expressing E. coli cells were allowed to mature in the P-trap under conditions similar to those in a hospital environment, a GFP-expressing E. coli-containing putative biofilm extended upward over 7 days to reach the strainer. This subsequently resulted in droplet dispersion to the surrounding areas (<30 in.) during faucet operation. We also demonstrated that P-trap colonization could occur by retrograde transmission along a common pipe. We postulate that the organisms mobilize up to the strainer from the P-trap, resulting in droplet dispersion rather than dispersion directly from the P-trap. This work helps to further define the mode of transmission of bacteria from a P-trap reservoir to a vulnerable hospitalized patient. IMPORTANCE Many recent reports demonstrate that sink drain pipes become colonized with highly consequential multidrug-resistant bacteria, which then results in hospital-acquired infections. However, the mechanism of dispersal of bacteria from the sink to patients has not been fully elucidated. Through establishment of a unique sink gallery, this work found that a staged mode of transmission involving biofilm growth from the lower pipe to the sink strainer and subsequent splatter to the bowl and surrounding area occurs rather than splatter directly from the water in the lower pipe. We have also demonstrated that bacterial transmission can occur via connections in wastewater plumbing to neighboring sinks. This work helps to more clearly define the mechanism and risk of transmission from a wastewater source to hospitalized patients in a world with increasingly antibiotic-resistant bacteria that can thrive in wastewater environments and cause infections in vulnerable patients.


2013 ◽  
Vol 80 (4) ◽  
pp. 1477-1481 ◽  
Author(s):  
Karina Klevanskaa ◽  
Nadja Bier ◽  
Kerstin Stingl ◽  
Eckhard Strauch ◽  
Stefan Hertwig

ABSTRACTAn efficient electroporation procedure forVibrio vulnificuswas designed using the new cloning vector pVv3 (3,107 bp). Transformation efficiencies up to 2 × 106transformants per μg DNA were achieved. The vector stably replicated in bothV. vulnificusandEscherichia coliand was also successfully introduced intoVibrio parahaemolyticusandVibrio cholerae. To demonstrate the suitability of the vector for molecular cloning, the green fluorescent protein (GFP) gene and thevvhBAhemolysin operon were inserted into the vector and functionally expressed inVibrioandE. coli.


mSphere ◽  
2018 ◽  
Vol 3 (5) ◽  
Author(s):  
Kensuke Shima ◽  
Maximilian Wanker ◽  
Rachel J. Skilton ◽  
Lesley T. Cutcliffe ◽  
Christiane Schnee ◽  
...  

ABSTRACTWe demonstrate the genetic transformation ofChlamydia pneumoniaeusing a plasmid shuttle vector system which generates stable transformants. The equineC. pneumoniaeN16 isolate harbors the 7.5-kb plasmid pCpnE1. We constructed the plasmid vector pRSGFPCAT-Cpn containing a pCpnE1 backbone, plus the red-shifted green fluorescent protein (RSGFP), as well as the chloramphenicol acetyltransferase (CAT) gene used for the selection of plasmid shuttle vector-bearingC. pneumoniaetransformants. Using the pRSGFPCAT-Cpn plasmid construct, expression of RSGFP in koala isolateC. pneumoniaeLPCoLN was demonstrated. Furthermore, we discovered that the human cardiovascular isolateC. pneumoniaeCV-6 and the human community-acquired pneumonia-associatedC. pneumoniaeIOL-207 could also be transformed with pRSGFPCAT-Cpn. In previous studies, it was shown thatChlamydiaspp. cannot be transformed when the plasmid shuttle vector is constructed from a different plasmid backbone to the homologous species. Accordingly, we confirmed that pRSGFPCAT-Cpn could not cross the species barrier in plasmid-bearing and plasmid-freeC. trachomatis,C. muridarum,C. caviae,C. pecorum, andC. abortus. However, contrary to our expectation, pRSGFPCAT-Cpn did transformC. felis. Furthermore, pRSGFPCAT-Cpn did not recombine with the wild-type plasmid ofC. felis. Taken together, we provide for the first time an easy-to-handle transformation protocol forC. pneumoniaethat results in stable transformants. In addition, the vector can cross the species barrier toC. felis, indicating the potential of horizontal pathogenic gene transfer via a plasmid.IMPORTANCEThe absence of tools for the genetic manipulation ofC. pneumoniaehas hampered research into all aspects of its biology. In this study, we established a novel reproducible method forC. pneumoniaetransformation based on a plasmid shuttle vector system. We constructed aC. pneumoniaeplasmid backbone shuttle vector, pRSGFPCAT-Cpn. The construct expresses the red-shifted green fluorescent protein (RSGFP) fused to chloramphenicol acetyltransferase inC. pneumoniae.C. pneumoniaetransformants stably retained pRSGFPCAT-Cpn and expressed RSGFP in epithelial cells, even in the absence of chloramphenicol. The successful transformation inC. pneumoniaeusing pRSGFPCAT-Cpn will advance the field of chlamydial genetics and is a promising new approach to investigate gene functions inC. pneumoniaebiology. In addition, we demonstrated that pRSGFPCAT-Cpn overcame the plasmid species barrier without the need for recombination with an endogenous plasmid, indicating the potential probability of horizontal chlamydial pathogenic gene transfer by plasmids between chlamydial species.


2013 ◽  
Vol 79 (20) ◽  
pp. 6481-6490 ◽  
Author(s):  
Wout Overkamp ◽  
Katrin Beilharz ◽  
Ruud Detert Oude Weme ◽  
Ana Solopova ◽  
Harma Karsens ◽  
...  

ABSTRACTGreen fluorescent protein (GFP) offers efficient ways of visualizing promoter activity and protein localizationin vivo, and many different variants are currently available to study bacterial cell biology. Which of these variants is best suited for a certain bacterial strain, goal, or experimental condition is not clear. Here, we have designed and constructed two “superfolder” GFPs with codon adaptation specifically forBacillus subtilisandStreptococcus pneumoniaeand have benchmarked them against five other previously available variants of GFP inB. subtilis,S. pneumoniae, andLactococcus lactis, using promoter-gfpfusions. Surprisingly, the best-performing GFP under our experimental conditions inB. subtiliswas the one codon optimized forS. pneumoniaeandvice versa. The data and tools described in this study will be useful for cell biology studies in low-GC-rich Gram-positive bacteria.


2018 ◽  
Vol 84 (23) ◽  
Author(s):  
James Matsunaga ◽  
David A. Haake

ABSTRACTMany strains of the spirocheteLeptospira interrogansserovar Pomona express the osmotically inducible sphingomyelinase genesph2at much higher levels than strains from other serovars. We developed a new green fluorescent protein (GFP) reporter plasmid to examinesph2gene expression determinants. The vector enables the fusion of the test promoter to the ribosome-binding site and coding region ofgfp. We fused thesph2promoters from theL. interrogansserovar Lai strain 56601 and from theL. interrogansserovar Pomona strain LC82-25 togfpto examine the molecular determinants of differentialsph2expression between the two strains. Similar to what was observed with the nativesph2genes, the introduction of the plasmids into the Lai 56601 strain resulted in near background levels ofgfpexpression from the Laisph2promoter, while the expression from the Pomonasph2promoter was high. The expression of both fusions increased at physiologic levels of osmolarity achieved by adding sodium chloride to the culture medium. We examined the role of a 17-bp upstream element found in allL. interrogansstrains expressing low basal levels ofsph2and missing from Pomona strains that expresssph2at high levels. When the 17-bp sequence present upstream of the Laisph2promoter was deleted or scrambled, the fusion expression increased substantially. Conversely, the insertion of the 17-bp sequence upstream of the Pomonasph2promoter diminished fusion expression. In contrast, the removal of an insertion sequence-like element that is found only in the Pomonasph2upstream sequence had no effect on the expression from the Pomonasph2fusion in the Lai strain. These findings demonstrate the utility of thegfpreporter plasmid in analyzing gene expression inL. interrogans.IMPORTANCEGenetic tools are needed to examine gene expression in the pathogenLeptospira interrogans. We developed a reporter plasmid that replicates inL. interroganswith green fluorescent protein (GFP) as the readout of promoter activity. We demonstrated an application of the new reporter plasmid by identifying an upstream element responsible for the poor basal expression of thesph2sphingomyelinase gene in anL. interrogansserovar Lai strain. This new tool is useful for the discovery of the molecular determinants ofL. interrogansgene expression.


2013 ◽  
Vol 79 (9) ◽  
pp. 3133-3136 ◽  
Author(s):  
Anthony J. Brzoska ◽  
Neville Firth

ABSTRACTWe have constructed a system for the regulated coexpression of green fluorescent protein (GFP) and red fluorescent protein (RFP) fusions inStaphylococcus aureus. It was validated by simultaneous localization of cell division proteins FtsZ and Noc and used to detect filament formation by an actin-like ParM plasmid partitioning protein in its native coccoid host.


2016 ◽  
Vol 83 (5) ◽  
Author(s):  
Aparna Krishnavajhala ◽  
Hannah K. Wilder ◽  
William K. Boyle ◽  
Ashish Damania ◽  
Justin A. Thornton ◽  
...  

ABSTRACT Relapsing fever (RF) spirochetes colonize and are transmitted to mammals primarily by Ornithodoros ticks, and little is known regarding the pathogen's life cycle in the vector. To further understand vector colonization and transmission of RF spirochetes, Borrelia turicatae expressing a green fluorescent protein (GFP) marker (B. turicatae-gfp) was generated. The transformants were evaluated during the tick-mammal infectious cycle, from the third nymphal instar to adult stage. B. turicatae-gfp remained viable for at least 18 months in starved fourth-stage nymphal ticks, and the studies indicated that spirochete populations persistently colonized the tick midgut and salivary glands. Our generation of B. turicatae-gfp also revealed that within the salivary glands, spirochetes are localized in the ducts and lumen of acini, and after tick feeding, the tissues remained populated with spirochetes. The B. turicatae-gfp generated in this study is an important tool to further understand and define the mechanisms of vector colonization and transmission. IMPORTANCE In order to interrupt the infectious cycle of tick-borne relapsing fever spirochetes, it is important to enhance our understanding of vector colonization and transmission. Toward this, we generated a strain of Borrelia turicatae that constitutively produced the green fluorescent protein, and we evaluated fluorescing spirochetes during the entire infectious cycle. We determined that the midgut and salivary glands of Ornithodoros turicata ticks maintain the pathogens throughout the vector's life cycle and remain colonized with the spirochetes for at least 18 months. We also determined that the tick's salivary glands were not depleted after a transmission blood feeding. These findings set the framework to further understand the mechanisms of midgut and salivary gland colonization.


2011 ◽  
Vol 77 (9) ◽  
pp. 2887-2897 ◽  
Author(s):  
Michaela Leroch ◽  
Dennis Mernke ◽  
Dieter Koppenhoefer ◽  
Prisca Schneider ◽  
Andreas Mosbach ◽  
...  

ABSTRACTThe green fluorescent protein (GFP) and its variants have been widely used in modern biology as reporters that allow a variety of live-cell imaging techniques. So far, GFP has rarely been used in the gray mold fungusBotrytis cinereabecause of low fluorescence intensity. The codon usage ofB. cinereagenes strongly deviates from that of commonly used GFP-encoding genes and reveals a lower GC content than other fungi. In this study, we report the development and use of a codon-optimized version of theB. cinereaenhanced GFP (eGFP)-encoding gene (Bcgfp) for improved expression inB. cinerea. Both the codon optimization and, to a smaller extent, the insertion of an intron resulted in higher mRNA levels and increased fluorescence. Bcgfpwas used for localization of nuclei in germinating spores and for visualizing host penetration. We further demonstrate the use of promoter-Bcgfpfusions for quantitative evaluation of various toxic compounds as inducers of theatrBgene encoding an ABC-type drug efflux transporter ofB. cinerea. In addition, a codon-optimized mCherry-encoding gene was constructed which yielded bright red fluorescence inB. cinerea.


Sign in / Sign up

Export Citation Format

Share Document