scholarly journals CO Dehydrogenase Genes Found in Metagenomic Fosmid Clones from the Deep Mediterranean Sea

2009 ◽  
Vol 75 (23) ◽  
pp. 7436-7444 ◽  
Author(s):  
Ana-Belen Martin-Cuadrado ◽  
Rohit Ghai ◽  
Aitor Gonzaga ◽  
Francisco Rodriguez-Valera

ABSTRACT The use of carbon monoxide (CO) as a biological energy source is widespread in microbes. In recent years, the role of CO oxidation in superficial ocean waters has been shown to be an important energy supplement for heterotrophs (carboxydovores). The key enzyme CO dehydrogenase was found in both isolates and metagenomes from the ocean's photic zone, where CO is continuously generated by organic matter photolysis. We have also found genes that code for both forms I (low affinity) and II (high affinity) in fosmids from a metagenomic library generated from a 3,000-m depth in the Mediterranean Sea. Analysis of other metagenomic databases indicates that similar genes are also found in the mesopelagic and bathypelagic North Pacific and on the surfaces of this and other oceanic locations (in lower proportions and similarities). The frequency with which this gene was found indicates that this energy-generating metabolism would be at least as important in the bathypelagic habitat as it is in the photic zone. Although there are no data about CO concentrations or origins deep in the ocean, it could have a geothermal origin or be associated with anaerobic metabolism of organic matter. The identities of the microbes that carry out these processes were not established, but they seem to be representatives of either Bacteroidetes or Chloroflexi.

2015 ◽  
Vol 12 (13) ◽  
pp. 9935-9989 ◽  
Author(s):  
R. Pedrosa-Pàmies ◽  
C. Parinos ◽  
A. Sanchez-Vidal ◽  
A. Gogou ◽  
A. Calafat ◽  
...  

Abstract. Surface sediments collected from deep slopes and basins (1018–4087 m depth) of the oligotrophic Eastern Mediterranean Sea have been analysed for bulk elemental and isotopic composition of organic carbon, total nitrogen and selected lipid biomarkers, jointly with grain size distribution and other geochemical proxies. The distribution and sources of sedimentary organic matter (OM) have been subsequently assessed and general environmental variables, such as water depth and currents, have been examined as causative factors of deep-sea sediment characteristics. Lithogenic and biogenic carbonates are the dominant sedimentary fractions, while both bulk and molecular organic tracers reflect a mixed contribution from autochthonous and allochthonous sources for the sedimentary OM, as indicated by relatively degraded marine OM, terrestrial plant waxes and anthropogenic OM including degraded petroleum by-products, respectively. Wide regional variations have been observed amongst the studied proxies, which reflect the multiple factors controlling sedimentation in the deep Eastern Mediterranean Sea. Our findings highlight the role of deep Eastern Mediterranean basins as depocentres of organic-rich fine-grained sediments (mean 5.4 ± 2.4 μm), with OM accumulation and burial due to aggregation mechanisms and hydrodynamic sorting. A multi-proxy approach is hired to investigate the biogeochemical composition of sediment samples, which sheds new light on the sources and transport mechanisms along with the impact of preservation vs. diagenetic processes on the composition of sedimentary OM in the deep basins of the oligotrophic Eastern Mediterranean Sea.


2006 ◽  
Vol 76 (1) ◽  
pp. 28-33 ◽  
Author(s):  
Yukari Egashira ◽  
Shin Nagaki ◽  
Hiroo Sanada

We investigated the change of tryptophan-niacin metabolism in rats with puromycin aminonucleoside PAN-induced nephrosis, the mechanisms responsible for their change of urinary excretion of nicotinamide and its metabolites, and the role of the kidney in tryptophan-niacin conversion. PAN-treated rats were intraperitoneally injected once with a 1.0% (w/v) solution of PAN at a dose of 100 mg/kg body weight. The collection of 24-hour urine was conducted 8 days after PAN injection. Daily urinary excretion of nicotinamide and its metabolites, liver and blood NAD, and key enzyme activities of tryptophan-niacin metabolism were determined. In PAN-treated rats, the sum of urinary excretion of nicotinamide and its metabolites was significantly lower compared with controls. The kidneyα-amino-β-carboxymuconate-ε-semialdehyde decarboxylase (ACMSD) activity in the PAN-treated group was significantly decreased by 50%, compared with the control group. Although kidney ACMSD activity was reduced, the conversion of tryptophan to niacin tended to be lower in the PAN-treated rats. A decrease in urinary excretion of niacin and the conversion of tryptophan to niacin in nephrotic rats may contribute to a low level of blood tryptophan. The role of kidney ACMSD activity may be minimal concerning tryptophan-niacin conversion under this experimental condition.


2020 ◽  
Vol 65 (1) ◽  
pp. 28-41
Author(s):  
Marwa Aly Ahmed ◽  
Júlia Erdőssy ◽  
Viola Horváth

Multifunctional nanoparticles have been shown earlier to bind certain proteins with high affinity and the binding affinity could be enhanced by molecular imprinting of the target protein. In this work different initiator systems were used and compared during the synthesis of poly (N-isopropylacrylamide-co-acrylic acid-co-N-tert-butylacrylamide) nanoparticles with respect to their future applicability in molecular imprinting of lysozyme. The decomposition of ammonium persulfate initiator was initiated either thermally at 60 °C or by using redox activators, namely tetramethylethylenediamine or sodium bisulfite at low temperatures. Morphology differences in the resulting nanoparticles have been revealed using scanning electron microscopy and dynamic light scattering. During polymerization the conversion of each monomer was followed in time. Striking differences were demonstrated in the incorporation rate of acrylic acid between the tetramethylethylenediamine catalyzed initiation and the other systems. This led to a completely different nanoparticle microstructure the consequence of which was the distinctly lower lysozyme binding affinity. On the contrary, the use of sodium bisulfite activation resulted in similar nanoparticle structural homogeneity and protein binding affinity as the thermal initiation.


Sign in / Sign up

Export Citation Format

Share Document