scholarly journals Utilization of Molasses Sugar for Lactic Acid Production by Lactobacillus delbrueckii subsp. delbrueckii Mutant Uc-3 in Batch Fermentation

2007 ◽  
Vol 74 (1) ◽  
pp. 333-335 ◽  
Author(s):  
Arti Dumbrepatil ◽  
Mukund Adsul ◽  
Shivani Chaudhari ◽  
Jayant Khire ◽  
Digambar Gokhale

ABSTRACT Efficient lactic acid production from cane sugar molasses by Lactobacillus delbrueckii mutant Uc-3 in batch fermentation process is demonstrated. Lactic acid fermentation using molasses was not significantly affected by yeast extract concentrations. The final lactic acid concentration increased with increases of molasses sugar concentrations up to 190 g/liter. The maximum lactic acid concentration of 166 g/liter was obtained at a molasses sugar concentration of 190 g/liter with a productivity of 4.15 g/liter/h. Such a high concentration of lactic acid with high productivity from molasses has not been reported previously, and hence mutant Uc-3 could be a potential candidate for economical production of lactic acid from molasses at a commercial scale.

2010 ◽  
Vol 113-116 ◽  
pp. 1080-1083 ◽  
Author(s):  
Ying Ying Liu ◽  
Qun Hui Wang ◽  
Li Wei Chen ◽  
Xiao Qiang Wang ◽  
Juan Wang

In order to reduce the costs of production and increase the lactic acid yields, this research adopts Bacillus subtilis to substitute enzymes. The method used in the study is two-phase fermentation - inoculate Bacillus subtilis to food waste to produce sugar, and then inoculate Lactobacillus to food waste to yield lactic acid. 87.22 g l–1 of total sugar can be obtained from non-autoclaved food waste in 30 h of saccharification at 40 centigrade. After two-phase fermentation, the optimal lactic acid concentration was 50.77g/L. The results indicate that two-phase fermentation is better than synchronous saccharification fermentation.


2016 ◽  
Vol 18 (1) ◽  
pp. 58-63 ◽  
Author(s):  
Hamidreza Ghafouri Taleghani ◽  
Ghasem D. Najafpour ◽  
Ali Asghar Ghoreyshi

Abstract In batch fermentation of whey, selection of suitable species at desired conditions such as substrate, product concentrations, temperature and inoculum size were investigated. Four Lactobacillus species and one Lactococcus species were screened for lactic acid production. Among them L. bulgaricus ATCC 11842 were selected for further studies. The optimal growth of the selected organism for variable size of inocula was examined. The results indicated that inoculum size had insignificant effect on the cell and lactic acid concentration. The effect of temperature was also studied at 32, 37, 42 and 47°C. Results showed that the concentration of cell dry weight increased with increment of temperature from 32 to 42°C. The maximum cell and lactic acid concentration was obtained at 42°C. The effect of initial substrate concentration on lactic acid production was also examined. The optimum initial lactose concentration was found to be 90 g/l.


2017 ◽  
Vol 66 (2) ◽  
pp. 273-276 ◽  
Author(s):  
Guoping Lv ◽  
Chengchuan Che ◽  
Li Li ◽  
Shujing Xu ◽  
Wanyi Guan ◽  
...  

The traditional CaCO3-based fermentation process generates huge amount of insoluble waste. To solve this problem, we have developed an efficient and green D-lactic acid fermentation process by using ammonia as neutralizer. The 106.7 g/l of D-lactic acid production and 0.89 g/g of consumed sugar were obtained by Sporolactobacillus inulinus CASD with a high optical purity of 99.7% by adding 100 mg/l betaine in the simple batch fermentation. The addition of betaine was experimentally proven to protect cell at high concentration of ammonium ion, increase the D-lactate dehydrogenase specific activity and thus promote the production of D-lactic acid.


RSC Advances ◽  
2017 ◽  
Vol 7 (39) ◽  
pp. 24233-24241 ◽  
Author(s):  
J. Tan ◽  
M. A. Abdel-Rahman ◽  
M. Numaguchi ◽  
Y. Tashiro ◽  
T. Zendo ◽  
...  

Thermophilic lactic acid bacterium enabled homo-l-lactic acid fermentation from hexose/pentose without carbon catabolite repression, and open repeated production by immobilization.


REAKTOR ◽  
2017 ◽  
Vol 5 (2) ◽  
pp. 79
Author(s):  
Abdullah Abdullah ◽  
H. B. Mat

The liquid pineapple waste contain mainly sucrose, glucose, fructose, and other nutrients. It therefore can potentiall be used as carbon source for organic acid fermentation. Recently, lactic acid has been considered to be an important raw material for production of biodegradadable lactace polymer. The experiments weree carried out in shake flash fermentation using lactobacillus delbroeckii. Effect of some parameters such as temperature, initial Ph, initial substrate concentration, yeast extract concentration and fermentation time to the yield have been studied. The highest yield was 85.65% achieved at 40 0C, PH 6.00, 52.2 g/l sugar concentration with 5 g/l yeast extract. There was no significant increasing in lactic acid production was observed if supplementation of yeast extract above 10%.Keyword : lactic acid fermentation, liquid pineapple waste, lactobacillus delbrueckii


Author(s):  
Micaela G. Chacón ◽  
Christopher Ibenegbu ◽  
David J. Leak

Abstract Objective A primary drawback to simultaneous saccharification and fermentation (SSF) processes is the incompatibility of the temperature and pH optima for the hydrolysis and fermentation steps—with the former working best at 50–55 °C and pH 4.5–5.5. Here, nine thermophilic Bacillus and Parageobacillus spp. were evaluated for growth and lactic acid fermentation at high temperature and low pH. The most promising candidate was then carried forward to demonstrate SSF using the cellulosic fraction from municipal solid waste (MSW) as a feedstock. Results B. smithii SA8Eth was identified as the most promising candidate and in a batch SSF maintained at 55 °C and pH 5.0, using a cellulase dose of 5 FPU/g glucan, it produced 5.1 g/L lactic acid from 2% (w/v) MSW cellulosic pulp in TSB media. Conclusion This work has both scientific and industrial relevance, as it evaluates a number of previously untrialled bacterial hosts for their compatibility with lignocellulosic SSF for lactic acid production and successfully identifies B. smithii as a potential candidate for such a process.


Sign in / Sign up

Export Citation Format

Share Document