scholarly journals Diversity of Lactic Acid Bacteria Associated with Fish and the Fish Farm Environment, Established by Amplified rRNA Gene Restriction Analysis

2007 ◽  
Vol 73 (9) ◽  
pp. 2947-2955 ◽  
Author(s):  
Christian Michel ◽  
Claire Pelletier ◽  
Mekki Boussaha ◽  
Diane-Gaëlle Douet ◽  
Armand Lautraite ◽  
...  

ABSTRACT Lactic acid bacteria have become a major source of concern for aquaculture in recent decades. In addition to true pathogenic species of worldwide significance, such as Streptococcus iniae and Lactococcus garvieae, several species have been reported to produce occasional fish mortalities in limited geographic areas, and many unidentifiable or ill-defined isolates are regularly isolated from fish or fish products. To clarify the nature and prevalence of different fish-associated bacteria belonging to the lactic acid bacterium group, a collection of 57 isolates of different origins was studied and compared with a set of 22 type strains, using amplified rRNA gene restriction analysis (ARDRA). Twelve distinct clusters were delineated on the basis of ARDRA profiles and were confirmed by sequencing of sodA and 16S rRNA genes. These clusters included the following: Lactococcus raffinolactis, L. garvieae, Lactococcus l., S. iniae, S. dysgalactiae, S. parauberis, S. agalactiae, Carnobacterium spp., the Enterococcus “faecium” group, a heterogeneous Enterococcus-like cluster comprising indiscernible representatives of Vagococcus fluvialis or the recently recognized V. carniphilus, V. salmoninarum, and Aerococcus spp. Interestingly, the L. lactis and L. raffinolactis clusters appeared to include many commensals of fish, so opportunistic infections caused by these species cannot be disregarded. The significance for fish populations and fish food processing of three or four genetic clusters of uncertain or complex definition, namely, Aerococcus and Enterococcus clusters, should be established more accurately.

2006 ◽  
Vol 73 (4) ◽  
pp. 1136-1145 ◽  
Author(s):  
Elina Vihavainen ◽  
Hanna-Saara Lundstr�m ◽  
Tuija Susiluoto ◽  
Joanna Koort ◽  
Lars Paulin ◽  
...  

ABSTRACT Some psychrotrophic lactic acid bacteria (LAB) are specific meat spoilage organisms in modified-atmosphere-packaged (MAP), cold-stored meat products. To determine if incoming broilers or the production plant environment is a source of spoilage LAB, a total of 86, 122, and 447 LAB isolates from broiler carcasses, production plant air, and MAP broiler products, respectively, were characterized using a library of HindIII restriction fragment length polymorphism (RFLP) patterns of the 16 and 23S rRNA genes as operational taxonomic units in numerical analyses. Six hundred thirteen LAB isolates from the total of 655 clustered in 29 groups considered to be species specific. Sixty-four percent of product isolates clustered either with Carnobacterium divergens or with Carnobacterium maltaromaticum type strains. The third major product-associated cluster (17% of isolates) was formed by unknown LAB. Representative strains from these three clusters were analyzed for the phylogeny of their 16S rRNA genes. This analysis verified that the two largest RFLP clusters consisted of carnobacteria and showed that the unknown LAB group consisted of Lactococcus spp. No product-associated LAB were detected in broiler carcasses sampled at the beginning of slaughter, whereas carnobacteria and lactococci, along with some other specific meat spoilage LAB, were recovered from processing plant air at many sites. This study reveals that incoming broiler chickens are not major sources of psychrotrophic spoilage LAB, whereas the detection of these organisms from the air of the processing environment highlights the role of processing facilities as sources of LAB contamination.


2000 ◽  
Vol 66 (3) ◽  
pp. 1098-1106 ◽  
Author(s):  
Steven P. Djordjevic ◽  
Wendy A. Forbes ◽  
Lisa A. Smith ◽  
Michael A. Hornitzky

ABSTRACT Twenty-five unique CfoI-generated whole-cell DNA profiles were identified in a study of 30 Paenibacillus alvei isolates cultured from honey and diseased larvae collected from honeybee (Apis mellifera) colonies in geographically diverse areas in Australia. The fingerprint patterns were highly variable and readily discernible from one another, which highlighted the potential of this method for tracing the movement of isolates in epidemiological studies. 16S rRNA gene fragments (length, 1,416 bp) for all 30 isolates were enzymatically amplified by PCR and subjected to restriction analysis with DraI, HinfI,CfoI, AluI, FokI, andRsaI. With each enzyme the restriction profiles of the 16S rRNA genes from all 30 isolates were identical (one restriction fragment length polymorphism [RFLP] was observed in theHinfI profile of the 16S rRNA gene from isolate 17), which confirmed that the isolates belonged to the same species. The restriction profiles generated by using DraI,FokI, and HinfI differentiated P. alvei from the phylogenetically closely related speciesPaenibacillus macerans and Paenibacillus macquariensis. Alveolysin gene fragments (length, 1,555 bp) were enzymatically amplified from some of the P. alvei isolates (19 of 30 isolates), and RFLP were detected by using the enzymesCfoI, Sau3AI, and RsaI. Extrachromosomal DNA ranging in size from 1 to 10 kb was detected in 17 of 30 (57%) P. alvei whole-cell DNA profiles. Extensive biochemical heterogeneity was observed among the 28 P. alvei isolates examined with the API 50CHB system. All of these isolates were catalase, oxidase, and Voges-Proskauer positive and nitrate negative, and all produced acid when glycerol, esculin, and maltose were added. The isolates produced variable results for 16 of the 49 biochemical tests; negative reactions were recorded in the remaining 30 assays. The genetic and biochemical heterogeneity inP. alvei isolates may be a reflection of adaptation to the special habitats in which they originated.


2021 ◽  
Vol 9 (5) ◽  
pp. 1093
Author(s):  
Luciana De Vero ◽  
Giovanna Iosca ◽  
Salvatore La China ◽  
Fabio Licciardello ◽  
Maria Gullo ◽  
...  

The recovery of yeasts and lactic acid bacteria (LAB) involved in sourdough fermentation is the first step in the selection of starters with suitable technological aptitude and capable of producing desired aromas and/or aromatic precursors. In this work, two sourdoughs samples (MA and MB) and the derived doughs (samples A and B) were collected from a bakery during artisanal Panettone manufacture. Yeasts and bacteria were isolated at different fermentation steps on selective agar media. A total of 77 isolates were obtained and characterized. Representative strains of yeasts and LAB were identified by sequencing the D1/D2 domain of the 26S rRNA and the 16S rRNA genes, respectively. Moreover, the volatile organic compounds (VOCs) produced in the collected samples were detected and correlated to the species found in the same samples. The results highlighted the occurrence of Kazachstania humilis in both samples A and B, while Saccharomyces cerevisiae strains were detected only in samples B. Among LAB, Fructilactobacillus sanfranciscensis was the main species detected in both sourdoughs. Furthermore, strains belonging to the species Lactiplantibacillus plantarum, Furfurilactobacillus rossiae, Lactobacillus parabuchneri, Leuconostoc citreum, and Leuconostoc mesenteroides were assessed in the dough samples.


2021 ◽  
Vol 9 (10) ◽  
pp. 2141
Author(s):  
Ji Young Jung ◽  
Sang-Soo Han ◽  
Z-Hun Kim ◽  
Myung Hoo Kim ◽  
Hye Kyeong Kang ◽  
...  

Lactic acid bacteria (LAB) are probiotic candidates that may restore the balance of microbiota populations in intestinal microbial ecosystems by controlling pathogens and thereby promoting host health. The goal of this study was to isolate potential probiotic LAB strains and characterize their antimicrobial abilities against pathogens in intestinal microbiota. Among 54 LAB strains isolated from fermented products, five LAB strains (NSMJ15, NSMJ16, NSMJ23, NSMJ42, and NFFJ04) were selected as potential probiotic candidates based on in vitro assays of acid and bile salt tolerance, cell surface hydrophobicity, adhesion to the intestinal epithelium, and antagonistic activity. Phylogenetic analysis based on 16S rRNA genes showed that they have high similarities of 99.58–100% to Lacticaseibacillus paracasei strains NSMJ15 and NFFJ04, Lentilactobacillus parabuchneri NSMJ16, Levilactobacillus brevis NSMJ23, and Schleiferilactobacillus harbinensis NSMJ42. To characterize their antimicrobial abilities against pathogens in intestinal microbiota, the impact of cell-free supernatant (CFS) treatment in 10% (v/v) fecal suspensions prepared using pooled cattle feces was investigated using in vitro batch cultures. Bacterial community analysis using rRNA amplicon sequencing for control and CFS-treated fecal samples at 8 and 16 h incubation showed the compositional change after CFS treatment for all five LAB strains. The changed compositions were similar among them, but there were few variable increases or decreases in some bacterial groups. Interestingly, as major genera that could exhibit pathogenicity and antibiotic resistance, the members of Bacillus, Escherichia, Leclercia, Morganella, and Vagococcus were decreased at 16 h in all CFS-treated samples. Species-level classification suggested that the five LAB strains are antagonistic to gut pathogens. This study showed the probiotic potential of the five selected LAB strains; in particular, their antimicrobial properties against pathogens present in the intestinal microbiota. These strains would therefore seem to play an important role in modulating the intestinal microbiome of the host.


2015 ◽  
Vol 65 (Pt_12) ◽  
pp. 4674-4681 ◽  
Author(s):  
Se-Hui Lee ◽  
Hye-Jin Ku ◽  
Min-Ju Ahn ◽  
Ji-Sang Hong ◽  
Se Hee Lee ◽  
...  

Strain FOL01T was isolated from traditionally fermented Korean jogae jeotgal (fermented clams). Phylogenetic sequence analysis of the 16S rRNA gene from FOL01T revealed that it is closely related to Weissella thailandensis FS61-1T and Weissella paramesenteroides ATCC 33313T with 99.39 % and 98.50 % 16S rRNA gene sequence similarities, respectively. API and VITEK analyses showed that strain FOL01T could be separated from its nearest phylogenetic relatives with respect to carbohydrate fermentation and antibiotic resistance. Subsequent amplified rRNA gene restriction analysis of 16S rRNA genes and HaeIII-restriction enzyme profiling of genomic DNAs revealed different band patterns. In addition, DNA–DNA hybridization of genomic DNAs showed 63.9 % relatedness. Analysis of the composition of cellular fatty acids confirmed that strain FOL01T differs from its close relatives and supports the proposal to assign this organism to a novel species of the genus Weissella. Based on these results, strain FOL01T could be classified as a novel species of the genus Weissella, for which the name Weissella jogaejeotgali sp. nov. is proposed. The type strain is FOL01T ( = KCCM 43128T = JCM 30589T).


1999 ◽  
Vol 65 (9) ◽  
pp. 4280-4284 ◽  
Author(s):  
Katrina A. O’Farrell ◽  
Peter H. Janssen

ABSTRACT Oligonucleotide primers were designed and used to amplify, by PCR, partial 16S rRNA genes of members of the bacterial divisionVerrucomicrobia in DNA extracted from a pasture soil. By applying most-probable-number theory to the assay, verrucomicrobia appeared to contribute some 0.2% of the soil DNA. Amplified ribosomal DNA restriction analysis of 53 cloned PCR-amplified partial 16S rRNA gene fragments and comparative sequence analysis of 21 nonchimeric partial 16S rRNA genes showed that these primers amplified only 16S rRNA genes of members of the Verrucomicrobia in DNA extracted from the soil.


Fermentation ◽  
2019 ◽  
Vol 5 (4) ◽  
pp. 97 ◽  
Author(s):  
Mattia Pia Arena ◽  
Pasquale Russo ◽  
Giuseppe Spano ◽  
Vittorio Capozzi

In this study, we explored the diversity of yeasts and lactic acid bacteria (LAB) associated with six spontaneous sourdough fermentations from the northern part of the Apulian region (Italy). Bacterial and yeast isolates from sourdough were investigated by amplified ribosomal DNA restriction analysis (ARDRA) and restriction fragment length polymorphism (RFLP) analysis, respectively. The identification of the isolates was confirmed by sequencing bacterial 16S gene and yeast ITS1–5.8S–ITS2 rRNA gene amplicons. Microbiological analysis of all sourdough samples revealed that LAB and yeast counts ranged between 1.7 × 105 and 6.5 × 108 cfu/g, and 7.7 × 105 and 2.5 × 107 cfu/g, respectively. The molecular identification at species level revealed the occurrence of Lactobacillus plantarum as the dominant LAB and Saccharomyces cerevisiae as the dominant yeast species in all different sourdough samples. Then, the ability of all isolated strains to inhibit and/or reduce the growth of several selected fungi was valued through the overlay method. In light of their antifungal performances, ten LAB strains were inoculated, singularly and in combination, in subsequent bread-making trials. Overall, we confirmed the potential of LAB to extend the shelf life of bread through spoilage inhibition and, for the first time, we observed a synergistic effect due to the combination of several isolated LAB on the inhibition behavior against selected fungal spoilage strains. Our findings suggest the exploration of a LAB-based approach in order to extend the shelf life of bread, reducing, at the same time, the use of chemical agents for food preservation.


2014 ◽  
Vol 5 (4) ◽  
pp. 497-503 ◽  
Author(s):  
L. Allegretti ◽  
L. Revolledo ◽  
C.S. Astolfi-Ferreira ◽  
J.L. Chacón ◽  
L.M. Martins ◽  
...  

In Brazil, the blue-fronted Amazon parrot (Amazona aestiva) is a common pet. The faecal microbiota of these birds include a wide variety of bacterial species, the majority of which belong to the Gram-positive lactic acid bacteria (LAB) clade. The aim of this study was to investigate differences in the diversity and abundance of LAB and Bifidobacterium spp. in the cloacae between wild and captive birds and to select, identify and characterise LAB for consideration as a parrot probiotic. Cloacal swabs were collected from 26 wild and 26 captive birds. Bacterial DNA was extracted, and the 16S rRNA genes were amplified. The numbers of PCR-positive Enterococcus, Pediococcus, and Lactobacillus species isolated from wild and captive birds were significantly different (P<0.05). Enterococcus was the most frequently isolated genus, followed by Pediococcus, Lactobacillus, Lactococcus and Bifidobacterium. Enterococcus faecium, Pediococcus pentosaceus, Lactococcus lactis, Lactobacillus coryniformis, Lactobacillus sanfranciscensis and Bifidobacterium bifidum were the most frequently isolated species from all birds. This study increases our understanding of the faecal microbiota, and may help to improve the nutrition and habitat management of captive and wild parrots. The bacterial population identified in the faecal microbiota of clinically healthy wild and captive parrots can serve as a database to analyse variations in the gut microbiota of pathogen-infected parrots and to develop probiotics specific to these genera.


Proceedings ◽  
2020 ◽  
Vol 66 (1) ◽  
pp. 3
Author(s):  
Giovanna Iosca ◽  
Luciana De Vero ◽  
Maria Gullo ◽  
Fabio Licciardello ◽  
Andrea Quartieri ◽  
...  

Sourdoughs represent an awesome example of ecosystem in which yeasts and lactic acid bacteria (LAB) interact with each other, defining the characteristics of the final product in terms of composition, texture, taste and flavor. Therefore, the identification of dominant yeasts and LAB involved in the fermentation process can lead to the selection of starters with suitable fermentation aptitude and capable of producing desired aromas and/or aromatic precursors. In this work, two sourdoughs samples (A and B) for Panettone production were collected from an artisan bakery. Yeasts and bacteria were isolated at different fermentation steps on selective agar media. A total of 120 isolates were obtained and firstly characterized by conventional microbiological methods. Afterward, genomic DNA was extracted from the cultures, and (GTG)5-PCR fingerprinting analysis was carried out to reduce the redundance among the isolates. Representative yeasts and LAB strains, having a unique profile, were identified by sequencing the D1/D2 domain of the 26S rRNA and the 16S rRNA genes, respectively. The results highlighted the occurrence of Kazachstania humilis and Fructilactobacillus sanfranciscensis in both sourdoughs. Among LAB, also some other strains belonging to Lactobacillus genus were found. Moreover, Saccharomyces cerevisiae and Staphylococcus spp. strains were detected in sample B. In this study, a pool of yeasts and LAB strains for producing starter cultures with specific technological traits for sourdoughs production was obtained.


Sign in / Sign up

Export Citation Format

Share Document