scholarly journals Differing Courses of Genetic Evolution of Bradyrhizobium Inoculants as Revealed by Long-Term Molecular Tracing in Acacia mangium Plantations

2014 ◽  
Vol 80 (18) ◽  
pp. 5709-5716 ◽  
Author(s):  
M. M. Perrineau ◽  
C. Le Roux ◽  
A. Galiana ◽  
A. Faye ◽  
R. Duponnois ◽  
...  

ABSTRACTIntroducing nitrogen-fixing bacteria as an inoculum in association with legume crops is a common practice in agriculture. However, the question of the evolution of these introduced microorganisms remains crucial, both in terms of microbial ecology and agronomy. We explored this question by analyzing the genetic and symbiotic evolution of twoBradyrhizobiumstrains inoculated onAcacia mangiumin Malaysia and Senegal 15 and 5 years, respectively, after their introduction. Based on typing of several loci, we showed that these two strains, although closely related and originally sampled in Australia, evolved differently. One strain was recovered in soil with the same five loci as the original isolate, whereas the symbiotic cluster of the other strain was detected with no trace of the three housekeeping genes of the original inoculum. Moreover, the nitrogen fixation efficiency was variable among these isolates (either recombinant or not), with significantly high, low, or similar efficiencies compared to the two original strains and no significant difference between recombinant and nonrecombinant isolates. These data suggested that 15 years after their introduction, nitrogen-fixing bacteria remain in the soil but that closely related inoculant strains may not evolve in the same way, either genetically or symbiotically. In a context of increasing agronomical use of microbial inoculants (for biological control, nitrogen fixation, or plant growth promotion), this result feeds the debate on the consequences associated with such practices.

2020 ◽  
Vol 86 (16) ◽  
Author(s):  
Jocelin Rizo ◽  
Marco A. Rogel ◽  
Daniel Guillén ◽  
Carmen Wacher ◽  
Esperanza Martinez-Romero ◽  
...  

ABSTRACT Traditional fermentations have been widely studied from the microbiological point of view, but little is known from the functional perspective. In this work, nitrogen fixation by free-living nitrogen-fixing bacteria was conclusively demonstrated in pozol, a traditional Mayan beverage prepared with nixtamalized and fermented maize dough. Three aspects of nitrogen fixation were investigated to ensure that fixation actually happens in the dough: (i) the detection of acetylene reduction activity directly in the substrate, (ii) the presence of potential diazotrophs, and (iii) an in situ increase in acetylene reduction by inoculation with one of the microorganisms isolated from the dough. Three genera were identified by sequencing the 16S rRNA and nifH genes as Kosakonia, Klebsiella, and Enterobacter, and their ability to fix nitrogen was confirmed. IMPORTANCE Nitrogen-fixing bacteria are found in different niches, as symbionts in plants, in the intestinal microbiome of several insects, and as free-living microorganisms. Their use in agriculture for plant growth promotion via biological nitrogen fixation has been extensively reported. This work demonstrates the ecological and functional importance that these bacteria can have in food fermentations, reevaluating the presence of these genera as an element that enriches the nutritional value of the dough.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Luz K. Medina-Cordoba ◽  
Aroon T. Chande ◽  
Lavanya Rishishwar ◽  
Leonard W. Mayer ◽  
Lina C. Valderrama-Aguirre ◽  
...  

AbstractPrevious studies have shown the sugarcane microbiome harbors diverse plant growth promoting microorganisms, including nitrogen-fixing bacteria (diazotrophs), which can serve as biofertilizers. The genomes of 22 diazotrophs from Colombian sugarcane fields were sequenced to investigate potential biofertilizers. A genome-enabled computational phenotyping approach was developed to prioritize sugarcane associated diazotrophs according to their potential as biofertilizers. This method selects isolates that have potential for nitrogen fixation and other plant growth promoting (PGP) phenotypes while showing low risk for virulence and antibiotic resistance. Intact nitrogenase (nif) genes and operons were found in 18 of the isolates. Isolates also encode phosphate solubilization and siderophore production operons, and other PGP genes. The majority of sugarcane isolates showed uniformly low predicted virulence and antibiotic resistance compared to clinical isolates. Six strains with the highest overall genotype scores were experimentally evaluated for nitrogen fixation, phosphate solubilization, and the production of siderophores, gibberellic acid, and indole acetic acid. Results from the biochemical assays were consistent and validated computational phenotype predictions. A genotypic and phenotypic threshold was observed that separated strains by their potential for PGP versus predicted pathogenicity. Our results indicate that computational phenotyping is a promising tool for the assessment of bacteria detected in agricultural ecosystems.


2019 ◽  
Vol 95 (11) ◽  
Author(s):  
Kiran Preet Padda ◽  
Akshit Puri ◽  
Chris Chanway

ABSTRACT Lodgepole pine (Pinus contorta var. latifolia) trees have been thriving on unreclaimed gravel mining sites in British Columbia, Canada, with tissue nitrogen-content and growth-rate unaffected by extremely low soil nitrogen-levels. This indicates that pine trees could be accessing a hidden nitrogen source to fulfill their nitrogen requirements – possibly via endophytic nitrogen-fixation. Endophytic bacteria originally isolated from native pine trees growing at gravel sites were selected (n = 14) for in vitro nitrogen-fixation assays and a year long greenhouse study to test the overall hypothesis that naturally occurring endophytic nitrogen-fixing bacteria sustain pine tree growth under nitrogen-limited conditions. Each of the 14 bacteria colonized the internal tissues of pine trees in the greenhouse study and fixed significant amounts of nitrogen from atmosphere (23%–53%) after one year as estimated through 15N isotope dilution assay. Bacterial inoculation also significantly enhanced the length (31%–64%) and biomass (100%–311%) of pine seedlings as compared to the non-inoculated control treatment. In addition, presence of the nifH gene was confirmed in all 14 bacteria. Our results support the possibility that pine trees associate with nitrogen-fixing bacteria, capable of endophytic colonization, to survive at unreclaimed gravel mining pits and this association could potentially be utilized for effective reclamation of highly disturbed sites in a sustainable manner.


2017 ◽  
Vol 84 (3) ◽  
Author(s):  
Nathan G. Walworth ◽  
Fei-Xue Fu ◽  
Michael D. Lee ◽  
Xiaoni Cai ◽  
Mak A. Saito ◽  
...  

ABSTRACTNitrogen-fixing (N2) cyanobacteria provide bioavailable nitrogen to vast ocean regions but are in turn limited by iron (Fe) and/or phosphorus (P), which may force them to employ alternative nitrogen acquisition strategies. The adaptive responses of nitrogen fixers to global-change drivers under nutrient-limited conditions could profoundly alter the current ocean nitrogen and carbon cycles. Here, we show that the globally important N2fixerTrichodesmiumfundamentally shifts nitrogen metabolism toward organic-nitrogen scavenging following long-term high-CO2adaptation under iron and/or phosphorus (co)limitation. Global shifts in transcripts and proteins under high-CO2/Fe-limited and/or P-limited conditions include decreases in the N2-fixing nitrogenase enzyme, coupled with major increases in enzymes that oxidize trimethylamine (TMA). TMA is an abundant, biogeochemically important organic nitrogen compound that supports rapidTrichodesmiumgrowth while inhibiting N2fixation. In a future high-CO2ocean, this whole-cell energetic reallocation toward organic nitrogen scavenging and away from N2fixation may reduce new-nitrogen inputs byTrichodesmiumwhile simultaneously depleting the scarce fixed-nitrogen supplies of nitrogen-limited open-ocean ecosystems.IMPORTANCETrichodesmiumis among the most biogeochemically significant microorganisms in the ocean, since it supplies up to 50% of the new nitrogen supporting open-ocean food webs. We usedTrichodesmiumcultures adapted to high-CO2conditions for 7 years, followed by additional exposure to iron and/or phosphorus (co)limitation. We show that “future ocean” conditions of high CO2and concurrent nutrient limitation(s) fundamentally shift nitrogen metabolism away from nitrogen fixation and instead toward upregulation of organic nitrogen-scavenging pathways. We show that the responses ofTrichodesmiumto projected future ocean conditions include decreases in the nitrogen-fixing nitrogenase enzymes coupled with major increases in enzymes that oxidize the abundant organic nitrogen source trimethylamine (TMA). Such a shift toward organic nitrogen uptake and away from nitrogen fixation may substantially reduce new-nitrogen inputs byTrichodesmiumto the rest of the microbial community in the future high-CO2ocean, with potential global implications for ocean carbon and nitrogen cycling.


1991 ◽  
Vol 75 (4) ◽  
pp. 575-582 ◽  
Author(s):  
Mark G. Belza ◽  
Sarah S. Donaldson ◽  
Gary K. Steinberg ◽  
Richard S. Cox ◽  
Philip H. Cogen

✓ Seventy-seven patients presenting with medulloblastoma between 1958 and 1986 were treated at Stanford University Medical Center and studied retrospectively. Multimodality therapy utilized surgical extirpation followed by megavoltage irradiation. In 15 cases chemotherapy was used as adjunctive treatment. The 10- and 15-year actuarial survival rates were both 41% with an 18-year maximum follow-up period (median 4.75 years). There were no treatment failures after 8 years of tumor-free survival. Gross total removal of tumor was achieved in 22 patients (32%); the surgical mortality rate was 3.9%. No significant difference was noted in the incidence of metastatic disease between shunted and nonshunted patients. The classical form of medulloblastoma was present in 67% of cases while the desmoplastic subtype was found in 16%. Survival rates were best for patients presenting after 1970, for those with desmoplastic tumors, and for patients receiving high-dose irradiation (≥ 5000 cGy) to the posterior fossa. Although early data on freedom from relapse suggested a possible beneficial effect from chemotherapy, long-term follow-up results showed no advantage from this modality of treatment. The patterns of relapse and survival were examined; 64% of relapses occurred within the central nervous system, and Collins' rule was applicable in 83% of cases beyond the period of risk. Although patients treated for recurrent disease could be palliated, none were long-term survivors. The study data indicate that freedom from relapse beyond 8 years from diagnosis can be considered as a cure in this disease. Long-term follow-up monitoring is essential to determine efficacy of treatment and to assess survival patterns accurately.


2017 ◽  
Vol 84 (1) ◽  
Author(s):  
Michael D. Lee ◽  
Eric A. Webb ◽  
Nathan G. Walworth ◽  
Fei-Xue Fu ◽  
Noelle A. Held ◽  
...  

ABSTRACTTrichodesmiumis a globally distributed cyanobacterium whose nitrogen-fixing capability fuels primary production in warm oligotrophic oceans. Like many photoautotrophs,Trichodesmiumserves as a host to various other microorganisms, yet little is known about how this associated community modulates fluxes of environmentally relevant chemical species into and out of the supraorganismal structure. Here, we utilized metatranscriptomics to examine gene expression activities of microbial communities associated withTrichodesmium erythraeum(strain IMS101) using laboratory-maintained enrichment cultures that have previously been shown to harbor microbial communities similar to those of natural populations. In enrichments maintained under two distinct CO2concentrations for ∼8 years, the community transcriptional profiles were found to be specific to the treatment, demonstrating a restructuring of overall gene expression had occurred. Some of this restructuring involved significant increases in community respiration-related transcripts under elevated CO2, potentially facilitating the corresponding measured increases in host nitrogen fixation rates. Particularly of note, in both treatments, community transcripts involved in the reduction of nitrate, nitrite, and nitrous oxide were detected, suggesting the associated organisms may play a role in colony-level nitrogen cycling. Lastly, a taxon-specific analysis revealed distinct ecological niches of consistently cooccurring major taxa that may enable, or even encourage, the stable cohabitation of a diverse community withinTrichodesmiumconsortia.IMPORTANCETrichodesmiumis a genus of globally distributed, nitrogen-fixing marine cyanobacteria. As a source of new nitrogen in otherwise nitrogen-deficient systems, these organisms help fuel carbon fixation carried out by other more abundant photoautotrophs and thereby have significant roles in global nitrogen and carbon cycling. Members of theTrichodesmiumgenus tend to form large macroscopic colonies that appear to perpetually host an association of diverse interacting microbes distinct from the surrounding seawater, potentially making the entire assemblage a unique miniature ecosystem. Since its first successful cultivation in the early 1990s, there have been questions about the potential interdependencies betweenTrichodesmiumand its associated microbial community and whether the host's seemingly enigmatic nitrogen fixation schema somehow involved or benefited from its epibionts. Here, we revisit these old questions with new technology and investigate gene expression activities of microbial communities living in association withTrichodesmium.


1984 ◽  
Vol 14 (4) ◽  
pp. 595-597 ◽  
Author(s):  
L. Z. Florence ◽  
F. D. Cook

Azotobacter spp., Azospirillum spp., and Desulfovibrio spp., were identified as the predominant nitrogen-fixing bacteria associated with seedling root sections collected from natural stands of Pinusbanksiana Lamb., Piceamariana (Mill.) B.S.P., and Larixlaricina (Du Roi) K. Koch growing in Alberta. Samples from the sandy upland habitat of P. banksiana exhibited lower average rates of nitrogen fixation relative to the wet lowland occupied by P. mariana and L. laricina. Average nitrogen-fixing capacity (by acetylene reduction) was greater among bacteria isolates from L. laricina than those from P. mariana. Azospirillum spp. were strongly associated with P. mariana, while Azotobacter spp. were isolated more frequently from L. laricina.


2016 ◽  
Vol 83 (1) ◽  
Author(s):  
Kai Battenberg ◽  
Jannah A. Wren ◽  
Janell Hillman ◽  
Joseph Edwards ◽  
Liujing Huang ◽  
...  

ABSTRACT The actinobacterial genus Frankia establishes nitrogen-fixing root nodule symbioses with specific hosts within the nitrogen-fixing plant clade. Of four genetically distinct subgroups of Frankia, cluster I, II, and III strains are capable of forming effective nitrogen-fixing symbiotic associations, while cluster IV strains generally do not. Cluster II Frankia strains have rarely been detected in soil devoid of host plants, unlike cluster I or III strains, suggesting a stronger association with their host. To investigate the degree of host influence, we characterized the cluster II Frankia strain distribution in rhizosphere soil in three locations in northern California. The presence/absence of cluster II Frankia strains at a given site correlated significantly with the presence/absence of host plants on the site, as determined by glutamine synthetase (glnA) gene sequence analysis, and by microbiome analysis (16S rRNA gene) of a subset of host/nonhost rhizosphere soils. However, the distribution of cluster II Frankia strains was not significantly affected by other potential determinants such as host-plant species, geographical location, climate, soil pH, or soil type. Rhizosphere soil microbiome analysis showed that cluster II Frankia strains occupied only a minute fraction of the microbiome even in the host-plant-present site and further revealed no statistically significant difference in the α-diversity or in the microbiome composition between the host-plant-present or -absent sites. Taken together, these data suggest that host plants provide a factor that is specific for cluster II Frankia strains, not a general growth-promoting factor. Further, the factor accumulates or is transported at the site level, i.e., beyond the host rhizosphere. IMPORTANCE Biological nitrogen fixation is a bacterial process that accounts for a major fraction of net new nitrogen input in terrestrial ecosystems. Transfer of fixed nitrogen to plant biomass is especially efficient via root nodule symbioses, which represent evolutionarily and ecologically specialized mutualistic associations. Frankia spp. (Actinobacteria), especially cluster II Frankia spp., have an extremely broad host range, yet comparatively little is known about the soil ecology of these organisms in relation to the host plants and their rhizosphere microbiomes. This study reveals a strong influence of the host plant on soil distribution of cluster II Frankia spp.


1981 ◽  
Vol 54 (6) ◽  
pp. 721-725 ◽  
Author(s):  
Dorcas S. Fulton ◽  
Victor A. Levin ◽  
William M. Wara ◽  
Michael S. Edwards ◽  
Charles B. Wilson

✓ Forty-five children harboring brain-stem tumors were treated at the University of California, San Francisco, between 1969 and 1979. Pathological diagnoses were made in 19 patients. All patients received radiation therapy (RT). Thirteen patients received chemotherapy before, during, or immediately after RT. Twenty-four patients were treated with chemotherapy at the time of tumor progression, after initial treatment with RT alone. No statistically significant difference in time to tumor progression or survival was found for treatment with chemotherapy as an adjuvant to RT compared to treatment with RT alone followed by chemotherapy administered at the time of tumor progression. There were, however, more long-term survivors in the group that was first treated with chemotherapy at the time of tumor progression. There was no statistically significant correlation between survival and tumor pathology or location, although there were more long-term survivors among patients harboring low-grade gliomas and among patients with tumors confined to the midbrain. The authors documented the response of some brain-stem tumors to chemotherapy; however, cooperative controlled studies will be required to determine the optimum treatment for this disease.


Sign in / Sign up

Export Citation Format

Share Document