scholarly journals Antibody Recognition Force Microscopy Shows that Outer Membrane Cytochromes OmcA and MtrC Are Expressed on the Exterior Surface of Shewanella oneidensis MR-1

2009 ◽  
Vol 75 (9) ◽  
pp. 2931-2935 ◽  
Author(s):  
Brian H. Lower ◽  
Ruchirej Yongsunthon ◽  
Liang Shi ◽  
Linda Wildling ◽  
Hermann J. Gruber ◽  
...  

ABSTRACT Antibody recognition force microscopy showed that OmcA and MtrC are expressed on the exterior surface of living Shewanella oneidensis MR-1 cells when Fe(III), including solid-phase hematite (Fe2O3), was the terminal electron acceptor. OmcA was localized to the interface between the cell and mineral. MtrC displayed a more uniform distribution across the cell surface. Both cytochromes were associated with an extracellular polymeric substance.

2019 ◽  
Author(s):  
Suryakant Mishra ◽  
Sahand Pirbadian ◽  
Amit Kumar Mondal ◽  
Moh El-Naggar ◽  
Ron Naaman

Multiheme cytochromes, located on the bacterial cell surface, function as long-distance (> 10 nm) electron conduits linking intracellular reactions to external surfaces. This extracellular electron transfer process, which allows microorganisms to gain energy by respiring solid redox-active minerals, also facilitates the wiring of cells to electrodes. While recent studies suggested that a chiral induced spin selectivity effect is linked to efficient electron transmission through biomolecules, this phenomenon has not been investigated in the extracellular electron conduits. Using magnetic conductive probe atomic force microscopy, Hall voltage measurements, and spin-dependent electrochemistry of the decaheme cytochromes MtrF and OmcA from the metal-reducing bacterium <i>Shewanella oneidensis</i> MR-1, we show that electron transport through these extracellular conduits is spin-selective. Our study has implications for understanding how spin-dependent interactions and magnetic fields may control electron transport across biotic-abiotic interfaces in both natural and biotechnological systems.


2009 ◽  
Vol 75 (11) ◽  
pp. 3641-3647 ◽  
Author(s):  
Gary A. Icopini ◽  
Joe G. Lack ◽  
Larry E. Hersman ◽  
Mary P. Neu ◽  
Hakim Boukhalfa

ABSTRACT We examined the ability of the metal-reducing bacteria Geobacter metallireducens GS-15 and Shewanella oneidensis MR-1 to reduce Pu(VI) and Pu(V). Cell suspensions of both bacteria reduced oxidized Pu [a mixture of Pu(VI) and Pu(V)] to Pu(IV). The rate of plutonium reduction was similar to the rate of U(VI) reduction obtained under similar conditions for each bacteria. The rates of Pu(VI) and U(VI) reduction by cell suspensions of S. oneidensis were slightly higher than the rates observed with G. metallireducens. The reduced form of Pu was characterized as aggregates of nanoparticulates of Pu(IV). Transmission electron microscopy images of the solids obtained from the cultures after the reduction of Pu(VI) and Pu(V) by S. oneidensis show that the Pu precipitates have a crystalline structure. The nanoparticulates of Pu(IV) were precipitated on the surface of or within the cell walls of the bacteria. The production of Pu(III) was not observed, which indicates that Pu(IV) was the stable form of reduced Pu under these experimental conditions. Experiments examining the ability of these bacteria to use Pu(VI) as a terminal electron acceptor for growth were inconclusive. A slight increase in cell density was observed for both G. metallireducens and S. oneidensis when Pu(VI) was provided as the sole electron acceptor; however, Pu(VI) concentrations decreased similarly in both the experimental and control cultures.


2000 ◽  
Vol 46 (9) ◽  
pp. 1456-1463 ◽  
Author(s):  
Weiping Qian ◽  
Danfeng Yao ◽  
Fang Yu ◽  
Bin Xu ◽  
Rong Zhou ◽  
...  

Abstract Background: Functional antibody surfaces were prepared on ultraflat polystyrene surfaces by physical adsorption, and the uniform distribution of monoclonal antibodies against hepatitis B surface antigen (anti-HBs) on such surfaces and the presence of dense hepatitis B surface antigen (HBsAg) particles captured by immobilized antibodies were identified. Methods: A model polystyrene film was spin-coated directly onto a silicon wafer surface. Atomic force microscopy was used to directly monitor the immobilization of anti-HBs antibodies and their specific molecular interaction with HBsAg. Enzyme immunoassay was also used to characterize functional antibody surfaces. Results: A mean roughness of 2 Å for areas of 25 μm2 was produced. We found a uniform distribution of anti-HBs antibodies on ultraflat polystyrene surfaces and the presence of dense HBsAg particles bound to such anti-HBs surfaces after incubation with HBsAg. Conclusions: This study confirmed the potential of preparing dense, homogeneous, highly specific, and highly stable antibody surfaces by immobilizing antibodies on polystyrene surfaces with controlled roughness. It is expected that such biofunctional surfaces could be of interest for the development of new solid-phase immunoassay techniques and biosensor techniques.


2005 ◽  
Vol 71 (11) ◽  
pp. 7453-7460 ◽  
Author(s):  
Rizlan Bencheikh-Latmani ◽  
Sarah Middleton Williams ◽  
Lisa Haucke ◽  
Craig S. Criddle ◽  
Liyou Wu ◽  
...  

ABSTRACT Whole-genome DNA microarrays were used to examine the gene expression profile of Shewanella oneidensis MR-1 during U(VI) and Cr(VI) reduction. The same control, cells pregrown with nitrate and incubated with no electron acceptor, was used for the two time points considered and for both metals. U(VI)-reducing conditions resulted in the upregulation (≥3-fold) of 121 genes, while 83 genes were upregulated under Cr(VI)-reducing conditions. A large fraction of the genes upregulated [34% for U(VI) and 29% for Cr(VI)] encode hypothetical proteins of unknown function. Genes encoding proteins known to reduce alternative electron acceptors [fumarate, dimethyl sulfoxide, Mn(IV), or soluble Fe(III)] were upregulated under both U(VI)- and Cr(VI)-reducing conditions. The involvement of these upregulated genes in the reduction of U(VI) and Cr(VI) was tested using mutants lacking one or several of the gene products. Mutant testing confirmed the involvement of several genes in the reduction of both metals: mtrA, mtrB, mtrC, and menC, all of which are involved in Fe(III) citrate reduction by MR-1. Genes encoding efflux pumps were upregulated under Cr(VI)- but not under U(VI)-reducing conditions. Genes encoding proteins associated with general (e.g., groL and dnaJ) and membrane (e.g., pspBC) stress were also upregulated, particularly under U(VI)-reducing conditions, pointing to membrane damage by the solid-phase reduced U(IV) and Cr(III) and/or the direct effect of the oxidized forms of the metals. This study sheds light on the multifaceted response of MR-1 to U(VI) and Cr(VI) under anaerobic conditions and suggests that the same electron transport pathway can be used for more than one electron acceptor.


2019 ◽  
Author(s):  
Suryakant Mishra ◽  
Sahand Pirbadian ◽  
Amit Kumar Mondal ◽  
Moh El-Naggar ◽  
Ron Naaman

Multiheme cytochromes, located on the bacterial cell surface, function as long-distance (> 10 nm) electron conduits linking intracellular reactions to external surfaces. This extracellular electron transfer process, which allows microorganisms to gain energy by respiring solid redox-active minerals, also facilitates the wiring of cells to electrodes. While recent studies suggested that a chiral induced spin selectivity effect is linked to efficient electron transmission through biomolecules, this phenomenon has not been investigated in the extracellular electron conduits. Using magnetic conductive probe atomic force microscopy, Hall voltage measurements, and spin-dependent electrochemistry of the decaheme cytochromes MtrF and OmcA from the metal-reducing bacterium <i>Shewanella oneidensis</i> MR-1, we show that electron transport through these extracellular conduits is spin-selective. Our study has implications for understanding how spin-dependent interactions and magnetic fields may control electron transport across biotic-abiotic interfaces in both natural and biotechnological systems.


2007 ◽  
Vol 73 (18) ◽  
pp. 5897-5903 ◽  
Author(s):  
Hakim Boukhalfa ◽  
Gary A. Icopini ◽  
Sean D. Reilly ◽  
Mary P. Neu

ABSTRACT The bacterial reduction of actinides has been suggested as a possible remedial strategy for actinide-contaminated environments, and the bacterial reduction of Pu(VI/V) has the potential to produce highly insoluble Pu(IV) solid phases. However, the behavior of plutonium with regard to bacterial reduction is more complex than for other actinides because it is possible for Pu(IV) to be further reduced to Pu(III), which is relatively more soluble than Pu(IV). This work investigates the ability of the metal-reducing bacteria Geobacter metallireducens GS15 and Shewanella oneidensis MR1 to enzymatically reduce freshly precipitated amorphous Pu(IV) (OH)4 [Pu(IV)(OH)4(am)] and soluble Pu(IV)(EDTA). In cell suspensions without added complexing ligands, minor Pu(III) production was observed in cultures containing S. oneidensis, but little or no Pu(III) production was observed in cultures containing G. metallireducens. In the presence of EDTA, most of the Pu(IV)(OH)4(am) present was reduced to Pu(III) and remained soluble in cell suspensions of both S. oneidensis and G. metallireducens. When soluble Pu(IV)(EDTA) was provided as the terminal electron acceptor, cell suspensions of both S. oneidensis and G. metallireducens rapidly reduced Pu(IV)(EDTA) to Pu(III)(EDTA) with nearly complete reduction within 20 to 40 min, depending on the initial concentration. Neither bacterium was able to use Pu(IV) (in any of the forms used) as a terminal electron acceptor to support growth. These results have significant implications for the potential remediation of plutonium and suggest that strongly reducing environments where complexing ligands are present may produce soluble forms of reduced Pu species.


PLoS ONE ◽  
2012 ◽  
Vol 7 (2) ◽  
pp. e30827 ◽  
Author(s):  
Miriam A. Rosenbaum ◽  
Haim Y. Bar ◽  
Qasim K. Beg ◽  
Daniel Segrè ◽  
James Booth ◽  
...  

2013 ◽  
Vol 1 (24) ◽  
pp. 3816 ◽  
Author(s):  
Hao Zhuang ◽  
Qijian Zhang ◽  
Yongxiang Zhu ◽  
Xufeng Xu ◽  
Haifeng Liu ◽  
...  

2010 ◽  
Vol 44 (7) ◽  
pp. 2721-2727 ◽  
Author(s):  
Jeffrey S. McLean ◽  
Greg Wanger ◽  
Yuri A. Gorby ◽  
Martin Wainstein ◽  
Jeff McQuaid ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document