scholarly journals Quantification and Evaluation of Infectivity of Shiga Toxin-Encoding Bacteriophages in Beef and Salad

2011 ◽  
Vol 77 (10) ◽  
pp. 3536-3540 ◽  
Author(s):  
Lejla Imamovic ◽  
Maite Muniesa

ABSTRACTStx bacteriophages in 68 samples of beef and salad were quantified by real-time quantitative PCR (qPCR). Stx phages from the samples were propagated inEscherichia coliC600,E. coliO157:H7, andShigellastrains and further quantified. Fifty percent of the samples carried infectious Stx phages that were isolated from plaques generated by lysis.

2015 ◽  
Vol 53 (7) ◽  
pp. 2148-2153 ◽  
Author(s):  
Xuan Qin ◽  
Eileen J. Klein ◽  
Emmanouil Galanakis ◽  
Anita A. Thomas ◽  
Jennifer R. Stapp ◽  
...  

Timely accurate diagnosis of Shiga toxin-producingEscherichia coli(STEC) infections is important. We evaluated a laboratory-developed real-time PCR (LD-PCR) assay targetingstx1,stx2, andrfbEO157with 2,386 qualifying stool samples submitted to the microbiology laboratory of a tertiary care pediatric center between July 2011 and December 2013. Broth cultures of PCR-positive samples were tested for Shiga toxins by enzyme immunoassay (EIA) (ImmunoCard STAT! enterohemorrhagicE. coli[EHEC]; Meridian Bioscience) and cultured in attempts to recover both O157 and non-O157 STEC.E. coliO157 and non-O157 STEC were detected in 35 and 18 cases, respectively. Hemolytic uremic syndrome (HUS) occurred in 12 patients (10 infected with STEC O157, one infected with STEC O125ac, and one with PCR evidence of STEC but no resulting isolate). Among the 59 PCR-positive STEC specimens from 53 patients, only 29 (54.7%) of the associated specimens were toxin positive by EIA. LD-PCR differentiated STEC O157 from non-O157 usingrfbEO157, and LD-PCR results prompted successful recovery ofE. coliO157 (n= 25) and non-O157 STEC (n= 8) isolates, although the primary cultures and toxin assays were frequently negative. A rapid “mega”-multiplex PCR (FilmArray gastrointestinal panel; BioFire Diagnostics) was used retrospectively, and results correlated with LD-PCR findings in 25 (89%) of the 28 sorbitol-MacConkey agar culture-negative STEC cases. These findings demonstrate that PCR is more sensitive than EIA and/or culture and distinguishes between O157 and non-O157 STEC in clinical samples and thatE. coliO157:H7 remains the predominant cause of HUS in our institution. PCR is highly recommended for rapid diagnosis of pediatric STEC infections.


2013 ◽  
Vol 80 (3) ◽  
pp. 1177-1184 ◽  
Author(s):  
Delphine Bibbal ◽  
Estelle Loukiadis ◽  
Monique Kérourédan ◽  
Carine Peytavin de Garam ◽  
Franck Ferré ◽  
...  

ABSTRACTShiga toxin-producingEscherichia coli(STEC) strains belonging to serotypes O157:H7, O26:H11, O103:H2, O111:H8, and O145:H28 are known to be associated with particular subtypes of the intimin gene (eae), namely, γ1, β1, ε, θ, and γ1, respectively. This study aimed at evaluating the usefulness of their detection for the specific detection of these five main pathogenic STEC serotypes in cattle feces. Using real-time PCR assays, 58.7% of 150 fecal samples were found positive for at least one of the four targetedeaesubtypes. The simultaneous presence ofstx,eae, and one of the five O group markers was found in 58.0% of the samples, and the five targetedstxpluseaeplus O genetic combinations were detected 143 times. However, taking into consideration the association betweeneaesubtypes and O group markers, the resultingstxpluseaesubtype plus O combinations were detected only 46 times. The 46 isolation assays performed allowed recovery of 22E. colistrains belonging to one of the five targeted STEC serogroups. In contrast, only 2 of 39 isolation assays performed on samples that were positive forstx,eaeand an O group marker, but that were negative for the correspondingeaesubtype, were successful. Characterization of the 24E. coliisolates showed that 6 were STEC, including 1 O157:H7, 3 O26:H11, and 2 O145:H28. The remaining 18 strains corresponded to atypical enteropathogenicE. coli(aEPEC). Finally, the more discriminatingeaesubtype-based PCR strategy described here may be helpful for the specific screening of the five major STEC in cattle feces.


2017 ◽  
Vol 61 (9) ◽  
Author(s):  
Andreas Bauwens ◽  
Lisa Kunsmann ◽  
Helge Karch ◽  
Alexander Mellmann ◽  
Martina Bielaszewska

ABSTRACT Ciprofloxacin, meropenem, fosfomycin, and polymyxin B strongly increase production of outer membrane vesicles (OMVs) in Escherichia coli O104:H4 and O157:H7. Ciprofloxacin also upregulates OMV-associated Shiga toxin 2a, the major virulence factor of these pathogens, whereas the other antibiotics increase OMV production without the toxin. These two effects might worsen the clinical outcome of infections caused by Shiga toxin-producing E. coli. Our data support the existing recommendations to avoid antibiotics for treatment of these infections.


2005 ◽  
Vol 68 (8) ◽  
pp. 1593-1599 ◽  
Author(s):  
MICHAEL A. GRANT

A new procedure for enrichment of Escherichia coli O157:H7 and other Shiga toxin–producing E. coli was compared to five standard methods: the British Public Health Laboratory Service, International Standard Method, U.S. Department of Agriculture, Canadian Health Products and Food Branch, and U.S. Food and Drug Administration. The new procedure was comparable to the standard methods in its ability to detect target cells inoculated into foods at approximately 1 CFU g−1. Comparisons were also made of the ability of the six enrichment procedures to detect E. coli O157:H7 against a large background of competitor microorganisms. In these experiments the new procedure yielded more target cells than the other five enrichments by two to three orders of magnitude as determined by enumeration on sorbitol MacConkey agar with tellurite and cefixime and Rainbow agar with tellurite and novobiocin and by verification of presumptive colonies by real-time PCR. For example, the population of enterohemorrhagic E. coli strain 6341 recovered on sorbitol MacConkey agar with tellurite and cefixime after enrichment with the experimental method was 2.42 × 108 CFU ml−1 and 1.80 × 106 CFU ml−1 after enrichment with the Canadian Health Products and Food Branch method, the second most effective in this experiment. In addition, broth cultures resulting from each of the six enrichment procedures were used to prepare templates for real-time PCR detection of stx1/stx2. Resulting threshold cycle (Ct) values after the experimental enrichment were similar to positive control values, whereas the five standard methods produced delayed Ct values or were not detected.


2019 ◽  
Vol 8 (32) ◽  
Author(s):  
Yen-Te Liao ◽  
Yujie Zhang ◽  
Alexandra Salvador ◽  
Vivian C. H. Wu

Escherichia phage vB_EcoM-Sa45lw, a new member of the T4-like phages, was isolated from surface water in a produce-growing area. The phage, containing double-stranded DNA with a genome size of 167,353 bp and 282 predicted open reading frames (ORFs), is able to infect generic Escherichia coli and Shiga toxin-producing E. coli O45 and O157 strains.


2020 ◽  
Vol 86 (24) ◽  
Author(s):  
Erin M. Nawrocki ◽  
Hillary M. Mosso ◽  
Edward G. Dudley

ABSTRACT Enterohemorrhagic Escherichia coli (EHEC) strains, including E. coli O157:H7, cause severe illness in humans due to the production of Shiga toxin (Stx) and other virulence factors. Because Stx is coregulated with lambdoid prophage induction, its expression is especially susceptible to environmental cues. Infections with Stx-producing E. coli can be difficult to model due to the wide range of disease outcomes: some infections are relatively mild, while others have serious complications. Probiotic organisms, members of the gut microbiome, and organic acids can depress Stx production, in many cases by inhibiting the growth of EHEC strains. On the other hand, the factors currently known to amplify Stx act via their effect on the stx-converting phage. Here, we characterize two interactive mechanisms that increase Stx production by O157:H7 strains: first, direct interactions with phage-susceptible E. coli, and second, indirect amplification by secreted factors. Infection of susceptible strains by the stx-converting phage can expand the Stx-producing population in a human or animal host, and phage infection has been shown to modulate virulence in vitro and in vivo. Acellular factors, particularly colicins and microcins, can kill O157:H7 cells but may also trigger Stx expression in the process. Colicins, microcins, and other bacteriocins have diverse cellular targets, and many such molecules remain uncharacterized. The identification of additional Stx-amplifying microbial interactions will improve our understanding of E. coli O157:H7 infections and help elucidate the intricate regulation of pathogenicity in EHEC strains.


2019 ◽  
Vol 85 (20) ◽  
Author(s):  
Laura Heinisch ◽  
Katharina Zoric ◽  
Maike Krause ◽  
Herbert Schmidt

ABSTRACT Certain foodborne Shiga toxin-producing Escherichia coli (STEC) strains carry genes encoding the subtilase cytotoxin (SubAB). Although the mode of action of SubAB is under intensive investigation, information about the regulation of subAB gene expression is currently not available. In this study, we investigated the regulation of the chromosomal subAB1 gene in laboratory E. coli strain DH5α and STEC O113:H21 strain TS18/08 using a luciferase reporter gene assay. Special emphasis was given to the role of the global regulatory protein genes hfq and hns in subAB1 promoter activity. Subsequently, quantitative real-time PCR was performed to analyze the expression of Shiga toxin 2a (Stx2a), SubAB1, and cytolethal distending toxin V (Cdt-V) genes in STEC strain TS18/08 and its isogenic hfq and hns deletion mutants. The deletion of hfq led to a significant increase of up to 2-fold in subAB1 expression, especially in the late growth phase, in both strains. However, deletion of hns showed different effects on the promoter activity during the early and late exponential growth phases in both strains. Furthermore, upregulation of stx2a and cdt-V was demonstrated in hfq and hns deletion mutants in TS18/08. These data showed that the expression of subAB1, stx2a, and cdt-V is integrated in the regulatory network of global regulators Hfq and H-NS in Escherichia coli. IMPORTANCE Shiga toxin-producing Escherichia coli (STEC) strains are responsible for outbreaks of foodborne diseases, such as hemorrhagic colitis and the hemolytic uremic syndrome. The pathogenicity of those strains can be attributed to, among other factors, the production of toxins. Recently, the subtilase cytotoxin was detected in locus of enterocyte effacement (LEE)-negative STEC, and it was confirmed that it contributes to the cytotoxicity of those STEC strains. Although the mode of action of SubAB1 is under intensive investigation, the regulation of gene expression is currently not known. The global regulatory proteins H-NS and Hfq have impact on many cellular processes and have been described to regulate virulence factors as well. Here, we investigate the role of hns and hfq in expression of subAB1 as well as stx2a and cdt-V in an E. coli laboratory strain as well as in wild-type STEC strain TS18/08.


2015 ◽  
Vol 53 (3) ◽  
pp. 1019-1023 ◽  
Author(s):  
Linda Chui ◽  
Laura Patterson-Fortin ◽  
Julie Kuo ◽  
Vincent Li ◽  
Valerie Boras

Two immunoassays (Shiga Toxin Chek and Shiga Toxin Quik Chek) and real-time PCR were used to detect Shiga toxin-producingEscherichia coli. For enriched culture, the sensitivity and specificity of the three methods ranged from 80.0% to 98.2% and 98.0% to 100.0%, respectively. STEC isolates were identified in 2.6% of the 784 samples.


2016 ◽  
Vol 82 (17) ◽  
pp. 5455-5464 ◽  
Author(s):  
Stefanie A. Barth ◽  
Christian Menge ◽  
Inga Eichhorn ◽  
Torsten Semmler ◽  
Lothar H. Wieler ◽  
...  

ABSTRACTShiga toxin-producingEscherichia coli(STEC) strains can colonize cattle for several months and may, thus, serve as gene reservoirs for the genesis of highly virulent zoonotic enterohemorrhagicE. coli(EHEC). Attempts to reduce the human risk for acquiring EHEC infections should include strategies to control such STEC strains persisting in cattle. We therefore aimed to identify genetic patterns associated with the STEC colonization type in the bovine host. We included 88 persistent colonizing STEC (STECper) (shedding for ≥4 months) and 74 sporadically colonizing STEC (STECspo) (shedding for ≤2 months) isolates from cattle and 16 bovine STEC isolates with unknown colonization types. Genoserotypes and multilocus sequence types (MLSTs) were determined, and the isolates were probed with a DNA microarray for virulence-associated genes (VAGs). All STECperisolates belonged to only four genoserotypes (O26:H11, O156:H25, O165:H25, O182:H25), which formed three genetic clusters (ST21/396/1705, ST300/688, ST119). In contrast, STECspoisolates were scattered among 28 genoserotypes and 30 MLSTs, with O157:H7 (ST11) and O6:H49 (ST1079) being the most prevalent. The microarray analysis identified 139 unique gene patterns that clustered with the genoserotypes and MLSTs of the strains. While the STECperisolates possessed heterogeneous phylogenetic backgrounds, the accessory genome clustered these isolates together, separating them from the STECspoisolates. Given the vast genetic heterogeneity of bovine STEC strains, defining the genetic patterns distinguishing STECperfrom STECspoisolates will facilitate the targeted design of new intervention strategies to counteract these zoonotic pathogens at the farm level.IMPORTANCERuminants, especially cattle, are sources of food-borne infections by Shiga toxin-producingEscherichia coli(STEC) in humans. Some STEC strains persist in cattle for longer periods of time, while others are detected only sporadically. Persisting strains can serve as gene reservoirs that supplyE. coliwith virulence factors, thereby generating new outbreak strains. Attempts to reduce the human risk for acquiring STEC infections should therefore include strategies to control such persisting STEC strains. By analyzing representative genes of their core and accessory genomes, we show that bovine STEC with a persistent colonization type emerged independently from sporadically colonizing isolates and evolved in parallel evolutionary branches. However, persistent colonizing strains share similar sets of accessory genes. Defining the genetic patterns that distinguish persistent from sporadically colonizing STEC isolates will facilitate the targeted design of new intervention strategies to counteract these zoonotic pathogens at the farm level.


2012 ◽  
Vol 78 (12) ◽  
pp. 4065-4073 ◽  
Author(s):  
Maite Muniesa ◽  
Jens A. Hammerl ◽  
Stefan Hertwig ◽  
Bernd Appel ◽  
Harald Brüssow

ABSTRACTIn 2011, Germany experienced the largest outbreak with a Shiga toxin-producingEscherichia coli(STEC) strain ever recorded. A series of environmental and trace-back and trace-forward investigations linked sprout consumption with the disease, but fecal-oral transmission was also documented. The genome sequences of the pathogen revealed a clonal outbreak with enteroaggregativeE. coli(EAEC). Some EAEC virulence factors are carried on the virulence plasmid pAA. From an unknown source, the epidemic strains acquired a lambdoid prophage carrying the gene for the Shiga toxin. The resulting strains therefore possess two different mobile elements, a phage and a plasmid, contributing essential virulence genes. Shiga toxin is released by decaying bacteria in the gut, migrates through the intestinal barrier, and is transported via the blood to target organs, like the kidney. In a mouse model, probiotic bifidobacteria interfered with transport of the toxin through the gut mucosa. Researchers explored bacteriophages, bacteriocins, and low-molecular-weight inhibitors against STEC. Randomized controlled clinical trials of enterohemorrhagicE. coli(EHEC)-associated hemolytic uremic syndrome (HUS) patients found none of the interventions superior to supportive therapy alone. Antibodies against one subtype of Shiga toxin protected pigs against fatal neurological infection, while treatment with a toxin receptor decoy showed no effect in a clinical trial. Likewise, a monoclonal antibody directed against a complement protein led to mixed results. Plasma exchange and IgG immunoadsoprtion ameliorated the condition in small uncontrolled trials. The epidemic O104:H4 strains were resistant to all penicillins and cephalosporins but susceptible to carbapenems, which were recommended for treatment.


Sign in / Sign up

Export Citation Format

Share Document