scholarly journals Phage Display of an Intracellular Carboxylesterase of Bacillus subtilis: Comparison of Sec and Tat Pathway Export Capabilities

2006 ◽  
Vol 72 (7) ◽  
pp. 4589-4595 ◽  
Author(s):  
Melloney J. Dröge ◽  
Ykelien L. Boersma ◽  
Peter G. Braun ◽  
Robbert Jan Buining ◽  
Mattijs K. Julsing ◽  
...  

ABSTRACT Using the phage display technology, a protein can be displayed at the surface of bacteriophages as a fusion to one of the phage coat proteins. Here we describe development of this method for fusion of an intracellular carboxylesterase of Bacillus subtilis to the phage minor coat protein g3p. The carboxylesterase gene was cloned in the g3p-based phagemid pCANTAB 5E upstream of the sequence encoding phage g3p and downstream of a signal peptide-encoding sequence. The phage-bound carboxylesterase was correctly folded and fully enzymatically active, as determined from hydrolysis of the naproxen methyl ester with Km values of 0.15 mM and 0.22 mM for the soluble and phage-displayed carboxylesterases, respectively. The signal peptide directs the encoded fusion protein to the cell membrane of Escherichia coli, where phage particles are assembled. In this study, we assessed the effects of several signal peptides, both Sec dependent and Tat dependent, on the translocation of the carboxylesterase in order to optimize the phage display of this enzyme normally restricted to the cytoplasm. Functional display of Bacillus carboxylesterase NA could be achieved when Sec-dependent signal peptides were used. Although a Tat-dependent signal peptide could direct carboxylesterase translocation across the inner membrane of E. coli, proper assembly into phage particles did not seem to occur.

2020 ◽  
Author(s):  
Chillel Jawara ◽  
Kirsty L Richards ◽  
Amber R Peswani ◽  
Kelly L Walker ◽  
Lara Nascimento ◽  
...  

Abstract Background: Numerous high-value proteins have been produced in E. coli, and a favoured strategy is to export the protein of interest to the periplasm by means of an N-terminal signal peptide. While the Sec pathway has been extensively used for this purpose, the Tat pathway has potential because it transports fully-folded heterologous proteins. Most studies on the Tat pathway have used the E. coli TorA signal peptide to direct export, because it is highly Tat-specific, unlike many Tat signal peptides which can also function as Sec signal peptides. However, the TorA signal peptide is prone to degradation in the cytoplasm, leading to reduced export rates in some cases. Here, we have tested a range of alternative signal peptides for their ability to direct Tat-dependent export of a single-chain antibody fragment (scFv). Results: We show that the signal peptides of E. coli AmiC, MdoD and YcbK direct efficient export of the scFv by both the Tat and Sec pathways, which may be a disadvantage when Tat-specific export is required. The same applies to the Tat signal peptide of Bacillus subtilis PhoD, which likewise directs efficient export by Sec. We engineered the PhoD signal peptide by introduction of a Lys or Asn residue in the C-terminal domain of the signal peptide, and we show that this substitution renders the signal peptide Tat-specific. These signal peptides, designated PhoDk and PhoDn, direct efficient export of scFv in shake flask and fed-batch fermentation studies, reaching export levels that are well above those obtained with the TorA signal peptide. Culturing in ambr250 bioreactors was used to fine-tune the growth conditions, and the net result was export of the scFv by the Tat pathway at levels of approximately 1g protein/L culture. Conclusions: The new PhoDn and PhoDk signal peptides have significant potential for the export of heterologous proteins by the Tat system.


2020 ◽  
Author(s):  
Chillel Jawara ◽  
Kirsty L Richards ◽  
Amber R Peswani ◽  
Kelly L Walker ◽  
Lara Nascimento ◽  
...  

Abstract Background : Numerous high-value proteins have been produced in E. coli, and a favoured strategy is to export the protein of interest to the periplasm by means of an N-terminal signal peptide. While the Sec pathway has been extensively used for this purpose, the Tat pathway has potential because it transports fully-folded heterologous proteins. Most studies on the Tat pathway have used the E. coli TorA signal peptide to direct export, because it is highly Tat-specific, unlike many Tat signal peptides which can also function as Sec signal peptides. However, the TorA signal peptide is prone to degradation in the cytoplasm, leading to reduced export rates in some cases. Here, we have tested a range of alternative signal peptides for their ability to direct Tat-dependent export of a single-chain antibody fragment (scFv). Results : We show that the signal peptides of E. coli AmiC, MdoD and YcbK direct efficient export of the scFv by both the Tat and Sec pathways, which may be a disadvantage when Tat-specific export is required. The same applies to the Tat signal peptide of Bacillus subtilis PhoD, which likewise directs efficient export by Sec. We engineered the PhoD signal peptide by introduction of a Lys or Asn residue in the C-terminal domain of the signal peptide, and we show that this substitution renders the signal peptide Tat-specific. These signal peptides, designated PhoDk and PhoDn, direct efficient export of scFv in shake flask and fed-batch fermentation studies, reaching export levels that are well above those obtained with the TorA signal peptide. Culturing in ambr250 bioreactors was used to fine-tune the growth conditions, and the net result was export of the scFv by the Tat pathway at levels of approximately 1g protein/L culture. Conclusions : The new PhoDn and PhoDk signal peptides have significant potential for the export of heterologous proteins by the Tat system.


1998 ◽  
Vol 80 (09) ◽  
pp. 354-362 ◽  
Author(s):  
Begoña Arza ◽  
Jordi Félez

IntroducationThe phage display technology represents a powerful tool for protein and drug design because vast numbers of amino acid sequences can be rapidly explored. This review describes the origins of phage libraries, their evolution and more recent advances, including examples in the area of thrombosis and haemostasis, where the phage display approach has just begun to be used with great success.Phage display uses filamentous phages (E. coli specific phages with a filamentous shape that contain a single stranded closed circular molecule of DNA), such as M13 or fd, as vehicles for displaying foreign peptides or proteins on their surface. This is carried out by fusing the coding sequence (DNA) for the peptide or protein to the amino (N)-terminus of either full-length phage minor coat protein III (cpIII), or to phage major coat protein VIII (cpVIII), to carboxy (C)-terminal domain of cpIII or, more recently, by fusion to the C-terminus of full-length phage minor coat protein VI (cpVI) (Fig. 1). Expression of the fusion protein and its subsequent incorporation into the mature phage particle results in the foreign peptide or protein being presented on the phage surface. Thus, the linkage of each peptide or protein to its encoding genetic material [contained as part of the single-stranded viral DNA (1, 2)] represents a great advantage over conventional cloning methods.The phage display approach was first used by Smith in 1985 (3), who expressed a library of peptide sequences at the N-terminus of cpIII (3-5). This insertion allowed phage assembly and display of the peptide on the phage surface, without affecting the phage infectivity significantly. The linkage of genotype and phenotype in the phage library allowed facile isolation of clones of specific interest from pools of millions of clones by successive rounds of phage affinity selection on surfaces coated with a ligand (panning) followed by phage amplification by infecting male E. coli (Fig. 2).The foreign peptides or proteins were displayed, initially, on every copy of the coat protein, but only short peptides can be displayed in this way without altering the phage infectivity. Two systems have been developed to solve this problem. One incorporates a second native gene III or VIII in the phage genome giving a mixture of native and recombinant coat protein incorporation on the phage. The second system provides the recombinant cpIII, cpVIII or cpVI gene on a phagemid (a plasmid containing the origin of replication of filamentous phage). Phagemids can be packaged into phage particles by superinfection with a helper phage. The fusion protein is incorporated onto the surface coat, along with copies of the native coat protein encoded by the helper phage. The result is a mixture of wild-type helper phage and recombinant phagemid particles, but due to a defective origin of replication the helper phage is poorly packaged to provide minimal competition with the phagemids (6). Phages that display both native coat protein and fusion protein are infective. Therefore, the display systems can be either multivalent or monovalent. Multivalent systems make use of gene III phage constructs or gene VIII phage or phagemid constructs and give a high number of foreign domains displayed on their surface (7). Monovalent systems utilize gene III or gene VI phagemid constructs, which have a low number of foreign domains displayed on their surface, usually a single copy. Consequently, monovalent systems distinguish between low affinity and high affinity clones in panning assays (1, 8).


2001 ◽  
Vol 183 (2) ◽  
pp. 604-610 ◽  
Author(s):  
Natascha Blaudeck ◽  
Georg A. Sprenger ◽  
Roland Freudl ◽  
Thomas Wiegert

ABSTRACT The bacterial twin arginine translocation (Tat) pathway translocates across the cytoplasmic membrane folded proteins which, in most cases, contain a tightly bound cofactor. Specific amino-terminal signal peptides that exhibit a conserved amino acid consensus motif, S/T-R-R-X-F-L-K, direct these proteins to the Tat translocon. The glucose-fructose oxidoreductase (GFOR) ofZymomonas mobilis is a periplasmic enzyme with tightly bound NADP as a cofactor. It is synthesized as a cytoplasmic precursor with an amino-terminal signal peptide that shows all of the characteristics of a typical twin arginine signal peptide. However, GFOR is not exported to the periplasm when expressed in the heterologous host Escherichia coli, and enzymatically active pre-GFOR is found in the cytoplasm. A precise replacement of the pre-GFOR signal peptide by an authentic E. coli Tat signal peptide, which is derived from pre-trimethylamine N-oxide (TMAO) reductase (TorA), allowed export of GFOR, together with its bound cofactor, to the E. coli periplasm. This export was inhibited by carbonyl cyanide m-chlorophenylhydrazone, but not by sodium azide, and was blocked in E. coli tatC andtatAE mutant strains, showing that membrane translocation of the TorA-GFOR fusion protein occurred via the Tat pathway and not via the Sec pathway. Furthermore, tight cofactor binding (and therefore correct folding) was found to be a prerequisite for proper translocation of the fusion protein. These results strongly suggest that Tat signal peptides are not universally recognized by different Tat translocases, implying that the signal peptides of Tat-dependent precursor proteins are optimally adapted only to their cognate export apparatus. Such a situation is in marked contrast to the situation that is known to exist for Sec-dependent protein translocation.


2020 ◽  
Vol 26 (42) ◽  
pp. 7672-7693 ◽  
Author(s):  
Bifang He ◽  
Anthony Mackitz Dzisoo ◽  
Ratmir Derda ◽  
Jian Huang

Background: Phage display is a powerful and versatile technology for the identification of peptide ligands binding to multiple targets, which has been successfully employed in various fields, such as diagnostics and therapeutics, drug-delivery and material science. The integration of next generation sequencing technology with phage display makes this methodology more productive. With the widespread use of this technique and the fast accumulation of phage display data, databases for these data and computational methods have become an indispensable part in this community. This review aims to summarize and discuss recent progress in the development and application of computational methods in the field of phage display. Methods: We undertook a comprehensive search of bioinformatics resources and computational methods for phage display data via Google Scholar and PubMed. The methods and tools were further divided into different categories according to their uses. Results: We described seven special or relevant databases for phage display data, which provided an evidence-based source for phage display researchers to clean their biopanning results. These databases can identify and report possible target-unrelated peptides (TUPs), thereby excluding false-positive data from peptides obtained from phage display screening experiments. More than 20 computational methods for analyzing biopanning data were also reviewed. These methods were classified into computational methods for reporting TUPs, for predicting epitopes and for analyzing next generation phage display data. Conclusion: The current bioinformatics archives, methods and tools reviewed here have benefitted the biopanning community. To develop better or new computational tools, some promising directions are also discussed.


2001 ◽  
Vol 4 (7) ◽  
pp. 553-572 ◽  
Author(s):  
D. Rodi ◽  
G. Agoston ◽  
R. Manon ◽  
R. Lapcevich ◽  
S. Green ◽  
...  

Viruses ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 568
Author(s):  
Godwin W. Nchinda ◽  
Nadia Al-Atoom ◽  
Mamie T. Coats ◽  
Jacqueline M. Cameron ◽  
Alain Bopda Waffo

Phage display technology involves the surface genetic engineering of phages to expose desirable proteins or peptides whose gene sequences are packaged within phage genomes, thereby rendering direct linkage between genotype with phenotype feasible. This has resulted in phage display systems becoming invaluable components of directed evolutionary biotechnology. The M13 is a DNA phage display system which dominates this technology and usually involves selected proteins or peptides being displayed through surface engineering of its minor coat proteins. The displayed protein or peptide’s functionality is often highly reduced due to harsh treatment of M13 variants. Recently, we developed a novel phage display system using the coliphage Qβ as a nano-biotechnology platform. The coliphage Qβ is an RNA phage belonging to the family of Leviviridae, a long investigated virus. Qβ phages exist as a quasispecies and possess features making them comparatively more suitable and unique for directed evolutionary biotechnology. As a quasispecies, Qβ benefits from the promiscuity of its RNA dependent RNA polymerase replicase, which lacks proofreading activity, and thereby permits rapid variant generation, mutation, and adaptation. The minor coat protein of Qβ is the readthrough protein, A1. It shares the same initiation codon with the major coat protein and is produced each time the ribosome translates the UGA stop codon of the major coat protein with the of misincorporation of tryptophan. This misincorporation occurs at a low level (1/15). Per convention and definition, A1 is the target for display technology, as this minor coat protein does not play a role in initiating the life cycle of Qβ phage like the pIII of M13. The maturation protein A2 of Qβ initiates the life cycle by binding to the pilus of the F+ host bacteria. The extension of the A1 protein with a foreign peptide probe recognizes and binds to the target freely, while the A2 initiates the infection. This avoids any disturbance of the complex and the necessity for acidic elution and neutralization prior to infection. The combined use of both the A1 and A2 proteins of Qβ in this display system allows for novel bio-panning, in vitro maturation, and evolution. Additionally, methods for large library size construction have been improved with our directed evolutionary phage display system. This novel phage display technology allows 12 copies of a specific desired peptide to be displayed on the exterior surface of Qβ in uniform distribution at the corners of the phage icosahedron. Through the recently optimized subtractive bio-panning strategy, fusion probes containing up to 80 amino acids altogether with linkers, can be displayed for target selection. Thus, combined uniqueness of its genome, structure, and proteins make the Qβ phage a desirable suitable innovation applicable in affinity maturation and directed evolutionary biotechnology. The evolutionary adaptability of the Qβ phage display strategy is still in its infancy. However, it has the potential to evolve functional domains of the desirable proteins, glycoproteins, and lipoproteins, rendering them superior to their natural counterparts.


PLoS ONE ◽  
2013 ◽  
Vol 8 (1) ◽  
pp. e53264 ◽  
Author(s):  
Jinhua Dong ◽  
Takahiro Otsuki ◽  
Tatsuya Kato ◽  
Tetsuya Kohsaka ◽  
Kazunori Ike ◽  
...  

2014 ◽  
Vol 33 (1) ◽  
pp. 28-33 ◽  
Author(s):  
Sara Mohammadzadeh ◽  
Masoumeh Rajabibazl ◽  
Mehdi Fourozandeh ◽  
Mohammad Javad Rasaee ◽  
Fatemeh Rahbarizadeh ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document