scholarly journals Bacterial Degradation of N,N-Diethyl-m-Toluamide (DEET): Cloning and Heterologous Expression of DEET Hydrolase

2007 ◽  
Vol 73 (9) ◽  
pp. 3105-3108 ◽  
Author(s):  
Giomar Rivera-Cancel ◽  
Daniela Bocioaga ◽  
Anthony G. Hay

ABSTRACT Pseudomonas putida DTB grew aerobically with N,N-diethyl-m-toluamide (DEET) as a sole carbon source, initially breaking it down into 3-methylbenzoate and diethylamine. The former was further metabolized via 3-methylcatechol and meta ring cleavage. A gene from DTB, dthA, was heterologously expressed and shown to encode the ability to hydrolyze DEET into 3-methylbenzoate and diethylamine.

2016 ◽  
Vol 27 (1) ◽  
pp. 44-47 ◽  
Author(s):  
Mihaela Carmen Eremia ◽  
Irina Lupescu ◽  
Mariana Vladu ◽  
Maria Petrescu ◽  
Gabriela Savoiu ◽  
...  

Abstract Polyhydroxyalcanoates (PHAs) are specifically produced by a wide variety of bacteria, as an intracellular energy reserve in the form of homo- and copolymers of [R]-β-hydroxyalkanoic acids, depending on the C source used for microorganism growth, when the cells are grown under stressing conditions. In this paper we present microbiological accumulation of poly-3-hydroxyoctanoate (PHO) by using a consortium of bacterial strains, Pseudomonas putida and Bacillus subtilis, in a rate of 3:1, grown on a fermentation medium based on sodium octanoate as the sole carbon source. The experiments performed in the above mentioned conditions led to the following results: from 18.70 g sodium octanoate (7.72 g/L in the fermentation medium) used up during the bioprocess, 3.93-3.96 g/L dry bacterial biomass and 1.834 - 1.884 g/L PHA, containing 85.83 - 86.8% PHO, were obtained.


2019 ◽  
Author(s):  
Mitchell G. Thompson ◽  
Luis E. Valencia ◽  
Jacquelyn M. Blake-Hedges ◽  
Pablo Cruz-Morales ◽  
Alexandria E. Velasquez ◽  
...  

ABSTRACTPseudomonas putida is a promising bacterial chassis for metabolic engineering given its ability to metabolize a wide array of carbon sources, especially aromatic compounds derived from lignin. However, this omnivorous metabolism can also be a hindrance when it can naturally metabolize products produced from engineered pathways. Herein we show that P. putida is able to use valerolactam as a sole carbon source, as well as degrade caprolactam. Lactams represent important nylon precursors, and are produced in quantities exceeding one million tons per year[1]. To better understand this metabolism we use a combination of Random Barcode Transposon Sequencing (RB-TnSeq) and shotgun proteomics to identify the oplBA locus as the likely responsible amide hydrolase that initiates valerolactam catabolism. Deletion of the oplBA genes prevented P. putida from growing on valerolactam, prevented the degradation of valerolactam in rich media, and dramatically reduced caprolactam degradation under the same conditions. Deletion of oplBA, as well as pathways that compete for precursors L-lysine or 5-aminovalerate, increased the titer of valerolactam from undetectable after 48 hours of production to ~90 mg/L. This work may serve as a template to rapidly eliminate undesirable metabolism in non-model hosts in future metabolic engineering efforts.


1998 ◽  
Vol 64 (2) ◽  
pp. 748-751 ◽  
Author(s):  
Sven Panke ◽  
Juan M. Sánchez-Romero ◽  
Víctor de Lorenzo

ABSTRACT To construct a bacterial catalyst for bioconversion of toluene and several alkyl and chloro- and nitro-substituted derivatives into the corresponding benzoates, the upper TOL operon of plasmid pWW0 ofPseudomonas putida was fully reassembled as a single gene cassette along with its cognate regulatory gene, xylR. The corresponding DNA segment was then targeted to the chromosome of aP. putida strain by using a genetic technique that allows deletion of all recombinant tags inherited from previous cloning steps and leaves the otherwise natural strain bearing exclusively the DNA segment encoding the phenotype of interest. The resulting strains grew on toluene as the only carbon source through a two-step process: conversion of toluene into benzoate, mediated by the upper TOL enzymes, and further metabolism of benzoate through the housekeepingortho-ring cleavage pathway of the catechol intermediate.


2002 ◽  
Vol 57 (3-4) ◽  
pp. 356-360 ◽  
Author(s):  
Borjana K. Tuleva ◽  
George R. Ivanov ◽  
Nelly E. Christova

Observation of both tensio-active and emulsifying activities indicated that biosurfactants were produced by the newly isolated and promising strain Pseudomonas putida 21BN. The biosurfactants were identified as rhamnolipids, the amphiphilic surface-active glycolipids usually secreted by Pseudomonas spp. Their production was observed when the strain was grown on soluble substrates, such as glucose or on poorly soluble substrates, such as hexadecane, reaching values of 1.2 g l-1. When grown on hexadecane as the sole carbon source the biosurfactant lowered the surface tension of the medium to 29 mN m-1 and formed stable and compact emulsions with emulsifying activity of 69%


1988 ◽  
Vol 20 (8-9) ◽  
pp. 205-210 ◽  
Author(s):  
G. Izaguirre ◽  
R. L. Wolfe ◽  
E. G. Means

2-Methylisoborneol (MIB) is a musty-odored compound occurring in natural waters that is difficult to remove by conventional water treatment methods. Biodegra-dation may be an alternative for its removal from drinking water. Studies were undertaken to determine the conditions enhancing MIB degradation and to isolate and identify the bacteria responsible. MIB degraders were enriched using mg/l levels of the compound, in a defined mineral medium, inoculated with water and sediment samples from reservoirs where MIB is seasonally produced. Cultures that degraded MIB were isolated and enumerated. Degradation occurred only in mixed cultures. MIB supported growth as sole carbon source at 1-6.7 mg/l. MIB at 10 µg/l was also degraded in sterile lake water inoculated with washed bacteria. The degradation of MIB at both µg/l and mg/l levels took from 7 days to more than 2 weeks.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yuji Tsujikawa ◽  
Shu Ishikawa ◽  
Iwao Sakane ◽  
Ken-ichi Yoshida ◽  
Ro Osawa

AbstractLactobacillus delbrueckii JCM 1002T grows on highly polymerized inulin-type fructans as its sole carbon source. When it was grown on inulin, a > 10 kb long gene cluster inuABCDEF (Ldb1381-1386) encoding a plausible ABC transporter was suggested to be induced, since a transcriptome analysis revealed that the fourth gene inuD (Ldb1384) was up-regulated most prominently. Although Bacillus subtilis 168 is originally unable to utilize inulin, it became to grow on inulin upon heterologous expression of inuABCDEF. When freshly cultured cells of the recombinant B. subtilis were then densely suspended in buffer containing inulin polymers and incubated, inulin gradually disappeared from the buffer and accumulated in the cells without being degraded, whereas levan-type fructans did not disappear. The results imply that inuABCDEF might encode a novel ABC transporter in L. delbrueckii to “monopolize” inulin polymers selectively, thereby, providing a possible advantage in competition with other concomitant inulin-utilizing bacteria.


Author(s):  
Vivek Kumar Ranjan ◽  
Shriparna Mukherjee ◽  
Subarna Thakur ◽  
Krutika Gupta ◽  
Ranadhir Chakraborty

2008 ◽  
Vol 5 (4) ◽  
pp. 367-374 ◽  
Author(s):  
Jing Wang ◽  
Guiwen Yan ◽  
Mingquan An ◽  
Jieli Liu ◽  
Houming Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document