intracellular energy
Recently Published Documents


TOTAL DOCUMENTS

113
(FIVE YEARS 36)

H-INDEX

23
(FIVE YEARS 2)

2021 ◽  
Vol 12 ◽  
Author(s):  
Judith Schenz ◽  
Lena Heilig ◽  
Tim Lohse ◽  
Lucas Tichy ◽  
Katharina Bomans ◽  
...  

Elevated blood lactate levels are frequently found in critically ill patients and thought to result from tissue hypoperfusion and cellular oxygen shortage. Considering the close relationship between immune cell function and intracellular metabolism, lactate is more than a glycolytic waste molecule but able to regulate the immune response. Our aim was to elucidate the temporal and mechanistic effect of extracellular lactate on monocytes. To this end, primary human monocytes and the human monocytic cell line MonoMac6 were stimulated with various toll-like-receptor agonists after priming with Na-L-lactate under constant pH conditions. As readout, cytokine production was measured, real-time assessment of intracellular energy pathways was performed, and intracellular metabolite concentrations were determined. Irrespective of the immunogenic stimulus, short-term Na-lactate-priming strongly reduced cytokine production capacity. Lactate and hexoses accumulated intracellularly and, together with a decreased glycolytic flux, indicate a lactate-triggered impairment of glycolysis. To counteract intracellular hyperglycemia, glucose is shunted into the branching polyol pathway, leading to sorbitol accumulation. In contrast, long-term priming with Na-L-lactate induced cellular adaption and abolished the suppressive effect. This lactate tolerance is characterized by a decreased cellular respiration due to a reduced complex-I activity. Our results indicate that exogenous lactate shapes monocyte function by altering the intracellular energy metabolism and acts as a metabolic checkpoint of monocyte activation.


Impact ◽  
2021 ◽  
Vol 2021 (8) ◽  
pp. 6-8
Author(s):  
Takeshi Yamada ◽  
Yuya Arakawa

Adoptive immunotherapy can be used to treat intractable cancers but this involves taking T cells from a patient and growing them in a laboratory and, once outside the body, the T cells can fall into a state of exhaustion. This is a barrier that Professor Takeshi Yamada, Department of Medical Technology, Immunology, Ehime Prefectural University of Health Sciences, Japan, is seeking to overcome. His work involves establishing a better understanding of the mechanisms of T cell exhaustion, which are currently not well known. Yamada and his team are focusing on intracellular energy metabolism and epigenetic control in mouse models with a view to finding a way to inhibit T cell exhaustion. The researchers are developing protocols to improve T cell function for immunotherapy by controlling epigenetic changes involved in glutamine metabolism, which induces T cell exhaustion. As previous research has focused on activating and proliferating tumour-specific T cells, Yamada's approach, with a focus on epigenetic control, is novel. The team is interested in T cell differentiation and its links to T cell exhaustion and so they are exploring the mechanism of T cell differentiation via intracellular energy metabolism and epigenetic changes and how this can impact on exhaustion. The researchers previously clarified that the enhancement of glutamine metabolism that occurs during the activation of T cell cultures causes epigenetic changes that induce T cell exhaustion and are expanding on this finding in order to develop a method to suppress T cell exhaustion via epigenetic control.


2021 ◽  
Vol 13 ◽  
Author(s):  
Yang Fang ◽  
Xifeng Wang ◽  
Danying Yang ◽  
Yimei Lu ◽  
Gen Wei ◽  
...  

The intracellular energy state will alter under the influence of physiological or pathological stimuli. In response to this change, cells usually mobilize various molecules and their mechanisms to promote the stability of the intracellular energy status. Mitochondria are the main source of ATP. Previous studies have found that the function of mitochondria is impaired in aging, neurodegenerative diseases, and metabolic diseases, and the damaged mitochondria bring lower ATP production, which further worsens the progression of the disease. Silent information regulator-1 (SIRT1) is a multipotent molecule that participates in the regulation of important biological processes in cells, including cellular metabolism, cell senescence, and inflammation. In this review, we mainly discuss that promoting the expression and activity of SIRT1 contributes to alleviating the energy stress produced by physiological and pathological conditions. The review also discusses the mechanism of precise regulation of SIRT1 expression and activity in various dimensions. Finally, according to the characteristics of this mechanism in promoting the recovery of mitochondrial function, the relationship between current pharmacological preparations and aging, neurodegenerative diseases, metabolic diseases, and other diseases was analyzed.


2021 ◽  
Vol 12 ◽  
Author(s):  
Valentina Audrito ◽  
Vincenzo Gianluca Messana ◽  
Lorenzo Brandimarte ◽  
Silvia Deaglio

The term NADome refers to the intricate network of intracellular and extracellular enzymes that regulate the synthesis or degradation of nicotinamide adenine dinucleotide (NAD) and to the receptors that engage it. Traditionally, NAD was linked to intracellular energy production through shuffling electrons between oxidized and reduced forms. However, recent data indicate that NAD, along with its biosynthetic and degrading enzymes, has a life outside of cells, possibly linked to immuno-modulating non-enzymatic activities. Extracellular NAD can engage puriginergic receptors triggering an inflammatory response, similar - to a certain extent – to what described for adenosine triphosphate (ATP). Likewise, NAD biosynthetic and degrading enzymes have been amply reported in the extracellular space, where they possess both enzymatic and non-enzymatic functions. Modulation of these enzymes has been described in several acute and chronic conditions, including obesity, cancer, inflammatory bowel diseases and sepsis. In this review, the role of the extracellular NADome will be discussed, focusing on its proposed role in immunomodulation, together with the different strategies for its targeting and their potential therapeutic impact.


2021 ◽  
Vol 22 (15) ◽  
pp. 8144
Author(s):  
Muhammad Arifur Rahman ◽  
Ravinder Kumar ◽  
Enrique Sanchez ◽  
Taras Y. Nazarko

Although once perceived as inert structures that merely serve for lipid storage, lipid droplets (LDs) have proven to be the dynamic organelles that hold many cellular functions. The LDs’ basic structure of a hydrophobic core consisting of neutral lipids and enclosed in a phospholipid monolayer allows for quick lipid accessibility for intracellular energy and membrane production. Whereas formed at the peripheral and perinuclear endoplasmic reticulum, LDs are degraded either in the cytosol by lipolysis or in the vacuoles/lysosomes by autophagy. Autophagy is a regulated breakdown of dysfunctional, damaged, or surplus cellular components. The selective autophagy of LDs is called lipophagy. Here, we review LDs and their degradation by lipophagy in yeast, which proceeds via the micrometer-scale raft-like lipid domains in the vacuolar membrane. These vacuolar microdomains form during nutrient deprivation and facilitate internalization of LDs via the vacuolar membrane invagination and scission. The resultant intra-vacuolar autophagic bodies with LDs inside are broken down by vacuolar lipases and proteases. This type of lipophagy is called microlipophagy as it resembles microautophagy, the type of autophagy when substrates are sequestered right at the surface of a lytic compartment. Yeast microlipophagy via the raft-like vacuolar microdomains is a great model system to study the role of lipid domains in microautophagic pathways.


Author(s):  
Nаtalia Khunderyakova ◽  
Alexsey Mosentsov ◽  
Natalia Belosludtseva ◽  
Natalia Khmil ◽  
Mariya Koroleva ◽  
...  

Author(s):  
Ryuta Jomura ◽  
Yu Tanno ◽  
Shin-ichi Akanuma ◽  
Yoshiyuki Kubo ◽  
Masanori Tachikawa ◽  
...  

Creatine (Cr)/phosphocreatine has the ability to buffer the high-energy phosphate, thereby contributing to intracellular energy homeostasis. As Cr biosynthetic enzyme deficiency is reported to increase susceptibility to colitis under conditions of inflammatory stress, Cr is critical for maintaining intestinal homeostasis under inflammatory stress. Cr is mainly produced in the hepatocytes and then distributed to other organs of the body by the circulatory system. Since monocarboxylate transporter 9 (MCT9) and MCT12 have been reported to accept Cr as a substrate, these transporters are proposed as candidates for Cr efflux transporter in the liver. The aim of this study was to elucidate the transport mechanism on Cr supply from the hepatocytes. Immunohistochemical staining of the rat liver sections revealed that both MCT9 and MCT12 were localized on the sinusoidal membrane of the hepatocytes. In the transport studies using Xenopus laevis oocyte expression system, [14C]Cr efflux from MCT9- or MCT12-expressing oocytes was significantly greater than that from water-injected oocytes. [14C]Cr efflux from primary cultured hepatocytes was significantly decreased following MCT12 mRNA knockdown, whereas this efflux was not decreased after mRNA knockdown of MCT9. Based on the extent of MCT12 protein downregulation and Cr efflux after knockdown of MCT12 in primary cultured rat hepatocytes, the contribution ratio of MCT12 in Cr efflux was calculated as 76.4%. Our study suggests that MCT12 substantially contributes to the efflux of Cr at the sinusoidal membrane of the hepatocytes.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 810
Author(s):  
Yoon-ha Jang ◽  
Sae Ryun Ahn ◽  
Ji-yeon Shim ◽  
Kwang-il Lim

Mitochondria are intracellular energy generators involved in various cellular processes. Therefore, mitochondrial dysfunction often leads to multiple serious diseases, including neurodegenerative and cardiovascular diseases. A better understanding of the underlying mitochondrial dysfunctions of the molecular mechanism will provide important hints on how to mitigate the symptoms of mitochondrial diseases and eventually cure them. In this review, we first summarize the key parts of the genetic processes that control the physiology and functions of mitochondria and discuss how alterations of the processes cause mitochondrial diseases. We then list up the relevant core genetic components involved in these processes and explore the mutations of the components that link to the diseases. Lastly, we discuss recent attempts to apply multiple genetic methods to alleviate and further reverse the adverse effects of the core component mutations on the physiology and functions of mitochondria.


Sign in / Sign up

Export Citation Format

Share Document