scholarly journals Improved Luciferase Tagging System for Listeria monocytogenes Allows Real-Time Monitoring In Vivo and In Vitro

2007 ◽  
Vol 73 (9) ◽  
pp. 3091-3094 ◽  
Author(s):  
Christian U. Riedel ◽  
Ian R. Monk ◽  
Pat G. Casey ◽  
David Morrissey ◽  
Gerald C. O'Sullivan ◽  
...  

ABSTRACT An improved system for luciferase tagging Listeria monocytogenes was developed by constructing a highly active, constitutive promoter. This construct gave 100-fold-higher activity in broth than any native promoter tested and allowed for imaging of lux-tagged L. monocytogenes in food products, during murine infections, and in tumor targeting studies.

2021 ◽  
Author(s):  
Junfei Ma ◽  
Qianyu Ji ◽  
Shuying Wang ◽  
Jingxuan Qiu ◽  
Qing Liu

AbstractAttenuated Listeria monocytogenes (L. monocytogenes) could be used as a vaccine vector for immunotherapy of tumors or pathogens. However, the lack of reliable promoters limits its ability to express foreign antigens. In this work, 21 promoters from L. monocytogenes were identified by RNA-seq analysis under two conditions of pH 7.4 and pH 5.5. Based on the constructed fluorescence report system, 7 constitutive promoters showed higher strength than that of Phelp, a previously reported strong promoter. Further, the selected 5 constitutive promoters also showed high activity in the production of UreB, a widely used antigen against Helicobacter pylori (H. pylori). In particular, a well-characterized constitutive promoter P18, which performed best in both fluorescence intensity and UreB production, was proved to be highly active in vitro and in vivo. In summary, we provide a useful promoter library for Listeria species and offer a reference for constitutive promoter mining in other organisms.Key points21 promoters from L. monocytogenes were identified by RNA-seq.Fluorescent tracer of L. monocytogenes (P18) was performed in vitro and in vivo.A well-characterized constitutive promoter P18 could improve the expression level of a foreign antigen UreB in L. monocytogenes


2019 ◽  
Vol 19 (12) ◽  
pp. 950-960
Author(s):  
Soghra Farzipour ◽  
Seyed Jalal Hosseinimehr

Tumor-targeting peptides have been generally developed for the overexpression of tumor specific receptors in cancer cells. The use of specific radiolabeled peptide allows tumor visualization by single photon emission computed tomography (SPECT) and positron emission tomography (PET) tools. The high affinity and specific binding of radiolabeled peptide are focusing on tumoral receptors. The character of the peptide itself, in particular, its complex molecular structure and behaviors influence on its specific interaction with receptors which are overexpressed in tumor. This review summarizes various strategies which are applied for the expansion of radiolabeled peptides for tumor targeting based on in vitro and in vivo specific tumor data and then their data were compared to find any correlation between these experiments. With a careful look at previous studies, it can be found that in vitro unblock-block ratio was unable to correlate the tumor to muscle ratio and the success of radiolabeled peptide for in vivo tumor targeting. The introduction of modifiers’ approaches, nature of peptides, and type of chelators and co-ligands have mixed effect on the in vitro and in vivo specificity of radiolabeled peptides.


2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
E Di Girolamo ◽  
M Appignani ◽  
N Furia ◽  
M Marini ◽  
P De Filippo ◽  
...  

Abstract Background Direct exposure of implantable cardioverter-defibrillators (ICDs) during radiotherapy is still considered potentially harmful, or even unsafe, by manufacturers and current recommendations. The effects of photon beams on ICDs are unpredictable, depending on multiple factors, and malfunctions may present during exposure. Purpose To evaluate transient ICD malfunctions by direct exposure to doses up to 10 Gy during low-energy RT, forty-three contemporary wireless-enabled ICDs, with at least 4 months to elective replacement indicator (ERI) were evaluated in a real-time in-vitro session in three different centres. Methods All ICDs had baseline interrogation. Single chamber devices were programmed to the VVI/40 mode and dual or triple chamber devices were programmed to the DDD/40 mode. Rate response function and antitachycardia therapies were disabled, with the ventricular tachycardia (VT)/ventricular fibrillation (VF) detection windows still active. A centring computed tomography was performed to build the corresponding treatment plan and the ICDs were blinded randomized to receive either 2-, 5- or 10-Gy exposure by a low photon-energy linear accelerator (6MV) in a homemade water phantom (600 MU/min). The effective dose received by the ICDs was randomly assessed by an in-vivo dosimetry. During radiotherapy, the ICDs were observed in a real-time session using manufacturer specific programmer, and device function (pacing, sensing, programmed parameters, arrhythmia detections) was recorder by the video camera in the bunker throughout the entire photon exposure. All ICDs had an interrogation session immediately after exposure. Results During radiotherapy course, almost all ICDs (93%) recorded major or minor transient electromagnetic interferences. On detail, sixteen ICDs (37.2%) reported atrial and/or ventricular oversensing, with base-rate-pacing inhibition and VT/VF detection. Twenty-four ICDs (55.8%) recorded non clinically relevant noise, and no detections were observed. Only three ICDs (7%) reported neither transient malfunction nor minor noise, withstanding direct radiation exposure. At immediate post-exposure interrogation, the ICDs that recorded major real-time malfunctions had VT/VF detections stored in the device memory. In none of the ICDs spontaneous changes in parameter settings were reported. Malfunctions occurred regardless of either 2-, 5- or 10-Gy photon beam exposure. Conclusions Transient electromagnetic interferences were observed in most of the contemporary ICDs during radiotherapy course, regardless of photon dose. To avoid potentially life-threatening ICD malfunctions such as pacing inhibition or inappropriate shock delivery, magnet application on the pocket site or ICD reprogramming to the asynchronous mode are still suggested in ICD patients ongoing even low energy radiotherapy exposure. Funding Acknowledgement Type of funding source: None


2021 ◽  
Vol 900 ◽  
pp. 115674
Author(s):  
Muthaiah Annalakshmi ◽  
Sakthivel Kumaravel ◽  
T.S.T. Balamurugan ◽  
Shen-Ming Chen ◽  
Ju-Liang He

2020 ◽  
Vol 22 (1) ◽  
pp. 314
Author(s):  
Maria D. Dmitrieva ◽  
Anna A. Voitova ◽  
Maya A. Dymova ◽  
Vladimir A. Richter ◽  
Elena V. Kuligina

Background: The combination of the unique properties of cancer cells makes it possible to find specific ligands that interact directly with the tumor, and to conduct targeted tumor therapy. Phage display is one of the most common methods for searching for specific ligands. Bacteriophages display peptides, and the peptides themselves can be used as targeting molecules for the delivery of diagnostic and therapeutic agents. Phage display can be performed both in vitro and in vivo. Moreover, it is possible to carry out the phage display on cells pre-enriched for a certain tumor marker, for example, CD44 and CD133. Methods: For this work we used several methods, such as phage display, sequencing, cell sorting, immunocytochemistry, phage titration. Results: We performed phage display using different screening systems (in vitro and in vivo), different phage libraries (Ph.D-7, Ph.D-12, Ph.D-C7C) on CD44+/CD133+ and without enrichment U-87 MG cells. The binding efficiency of bacteriophages displayed tumor-targeting peptides on U-87 MG cells was compared in vitro. We also conducted a comparative analysis in vivo of the specificity of the accumulation of selected bacteriophages in the tumor and in the control organs (liver, brain, kidney and lungs). Conclusions: The screening in vivo of linear phage peptide libraries for glioblastoma was the most effective strategy for obtaining tumor-targeting peptides providing targeted delivery of diagnostic and therapeutic agents to glioblastoma.


2015 ◽  
Vol 51 (32) ◽  
pp. 6948-6951 ◽  
Author(s):  
Yanfeng Zhang ◽  
Qian Yin ◽  
Jonathan Yen ◽  
Joanne Li ◽  
Hanze Ying ◽  
...  

Anin vitroandin vivodrug-reporting system is developed for real-time monitoring of drug release via the analysis of the concurrently released near-infrared fluorescence dye.


mBio ◽  
2011 ◽  
Vol 2 (3) ◽  
Author(s):  
Christina D. Orrú ◽  
Jason M. Wilham ◽  
Lynne D. Raymond ◽  
Franziska Kuhn ◽  
Björn Schroeder ◽  
...  

ABSTRACT A key challenge in managing transmissible spongiform encephalopathies (TSEs) or prion diseases in medicine, agriculture, and wildlife biology is the development of practical tests for prions that are at or below infectious levels. Of particular interest are tests capable of detecting prions in blood components such as plasma, but blood typically has extremely low prion concentrations and contains inhibitors of the most sensitive prion tests. One of the latter tests is quaking-induced conversion (QuIC), which can be as sensitive as in vivo bioassays, but much more rapid, higher throughput, and less expensive. Now we have integrated antibody 15B3-based immunoprecipitation with QuIC reactions to increase sensitivity and isolate prions from inhibitors such as those in plasma samples. Coupling of immunoprecipitation and an improved real-time QuIC reaction dramatically enhanced detection of variant Creutzfeldt-Jakob disease (vCJD) brain tissue diluted into human plasma. Dilutions of 1014-fold, containing ~2 attogram (ag) per ml of proteinase K-resistant prion protein, were readily detected, indicating ~10,000-fold greater sensitivity for vCJD brain than has previously been reported. We also discriminated between plasma and serum samples from scrapie-infected and uninfected hamsters, even in early preclinical stages. This combined assay, which we call “enhanced QuIC” (eQuIC), markedly improves prospects for routine detection of low levels of prions in tissues, fluids, or environmental samples. IMPORTANCE Transmissible spongiform encephalopathies (TSEs) are largely untreatable and are difficult to diagnose definitively prior to irreversible clinical decline or death. The transmissibility of TSEs within and between species highlights the need for practical tests for even the smallest amounts of infectivity. A few sufficiently sensitive in vitro methods have been reported, but most have major limitations that would preclude their use in routine diagnostic or screening applications. Our new assay improves the outlook for such critical applications. We focused initially on blood plasma because a practical blood test for prions would be especially valuable for TSE diagnostics and risk reduction. Variant Creutzfeldt-Jakob disease (vCJD) in particular has been transmitted between humans via blood transfusions. Enhanced real-time quaking-induced conversion (eRTQ) provides by far the most sensitive detection of vCJD to date. The 15B3 antibody binds prions of multiple species, suggesting that our assay may be useful for clinical and fundamental studies of a variety of TSEs of humans and animals.


1998 ◽  
Vol 66 (12) ◽  
pp. 5677-5683 ◽  
Author(s):  
Kenji Hirose ◽  
Hirohiko Suzuki ◽  
Hitoshi Nishimura ◽  
Akio Mitani ◽  
Junji Washizu ◽  
...  

ABSTRACT Exogenous interleukin-15 (IL-15) stimulates intestinal intraepithelial lymphocytes (i-IEL) from mice to proliferate and produce gamma interferon (IFN-γ) in vitro. To determine whether endogenous IL-15 is involved in activation of i-IEL during intestinal infection, we examined IL-15 synthesis by intestinal epithelial cells (i-EC) after infection with Listeria monocytogenes in rats. In in vitro experiments, invasion of L. monocytogenes into IEC-6 cells, a rat small intestine epithelial cell line, evidently induced IL-15 mRNA expression coincident with nuclear factor κB (NF-κB) activation, which is essential for IL-15 gene expression. IL-15 synthesis was detected in rat i-EC on day 1 after an oral inoculation of L. monocytogenes in vivo. The numbers of T-cell receptor (TCR) γδ+ T cells, NKR.P1+cells, and CD3+ CD8+ αα cells in i-IEL were significantly increased on day 1 after oral infection. The i-IEL from infected rats produced larger amounts of IFN-γ upon stimulation with immobilized anti-TCR γδ or anti-NKR.P1 monoclonal antibodies. These results suggest that IL-15 produced by i-EC may stimulate significant fractions of i-IEL to produce IFN-γ at an early phase of oral infection with L. monocytogenes.


Sign in / Sign up

Export Citation Format

Share Document