scholarly journals Inactivation of Murine Norovirus on a Range of Copper Alloy Surfaces Is Accompanied by Loss of Capsid Integrity

2014 ◽  
Vol 81 (3) ◽  
pp. 1085-1091 ◽  
Author(s):  
Sarah L. Warnes ◽  
Emma N. Summersgill ◽  
C. William Keevil

ABSTRACTNorovirus is one of the most common causes of acute viral gastroenteritis. The virus is spread via the fecal-oral route, most commonly from infected food and water, but several outbreaks have originated from contamination of surfaces with infectious virus. In this study, a close surrogate of human norovirus causing gastrointestinal disease in mice, murine norovirus type 1 (MNV-1), retained infectivity for more than 2 weeks following contact with a range of surface materials, including Teflon (polytetrafluoroethylene [PTFE]), polyvinyl chloride (PVC), ceramic tiles, glass, silicone rubber, and stainless steel. Persistence was slightly prolonged on ceramic surfaces. A previous study in our laboratory observed that dry copper and copper alloy surfaces rapidly inactivated MNV-1 and destroyed the viral genome. In this new study, we have observed that a relatively small change in the percentage of copper, between 70 and 80% in copper nickels and 60 and 70% in brasses, had a significant influence on the ability of the alloy to inactivate norovirus. Nickel alone did not affect virus, but zinc did have some antiviral effect, which was synergistic with copper and resulted in an increased efficacy of brasses with lower percentages of copper. Electron microscopy of purified MNV-1 that had been exposed to copper and stainless steel surfaces suggested that a massive breakdown of the viral capsid had occurred on copper. In addition, MNV-1 that had been exposed to copper and treated with RNase demonstrated a reduction in viral gene copy number. This suggests that capsid integrity is compromised upon contact with copper, allowing copper ion access to the viral genome.

Food Control ◽  
2021 ◽  
pp. 108378
Author(s):  
Yoah Moon ◽  
Sangha Han ◽  
Jeong won Son ◽  
Si Hong Park ◽  
Sang-Do Ha

2014 ◽  
Vol 40 (7) ◽  
pp. 9693-9700 ◽  
Author(s):  
Xiang Zhang ◽  
Guojun Ma ◽  
Yibiao Jin ◽  
Puhong Cheng

2018 ◽  
Author(s):  
Michèle Brocard ◽  
Valentina Iadevaia ◽  
Philipp Klein ◽  
Belinda Hall ◽  
Glenys Lewis ◽  
...  

ABSTRACTDuring viral infection, the accumulation of RNA replication intermediates or viral proteins imposes major stress on the host cell. In response, cellular stress pathways can rapidly impose defence mechanisms by shutting off the protein synthesis machinery, which viruses depend on, and triggering the accumulation of mRNAs into stress granules to limit the use of energy and nutrients. Because this threatens viral gene expression, viruses need to evade these pathways to propagate. Human norovirus is responsible for gastroenteritis outbreaks worldwide. Previously we showed that murine norovirus (MNV) regulates the activity of eukaryotic initiation factors (eIFs). Here we examined how MNV interacts with the eIF2α signaling axis controlling translation and stress granules accumulation. We show that while MNV infection represses host cell translation, it results in the assembly of virus-specific granules rather than stress granules. Further mechanistic analyses revealed that eIF2α signaling is uncoupled from translational stalling. Moreover the interaction of the RNA-binding protein G3BP1 with viral factors together with a redistribution of its cellular interacting partners could explain norovirus evasion of stress granules assembly. These results identify novel strategies by which norovirus ensure efficient replication propagation by manipulating the host stress response.


2013 ◽  
Vol 52 ◽  
pp. 359-366 ◽  
Author(s):  
Xinjian Yuan ◽  
Kunlun Tang ◽  
Yongqiang Deng ◽  
Jun Luo ◽  
Guangmin Sheng

2019 ◽  
Vol 94 (4) ◽  
Author(s):  
Navneet Singh ◽  
David C. Tscharke

ABSTRACT During herpes simplex virus (HSV) latency, the viral genome is harbored in peripheral neurons in the absence of infectious virus but with the potential to restart infection. Advances in epigenetics have helped explain how viral gene expression is largely inhibited during latency. Paradoxically, at the same time, the view that latency is entirely silent has been eroding. This low-level noise has implications for our understanding of HSV latency and should not be ignored.


Author(s):  
Changqing Ye

The article presents a study of two different brazing joints produced by dissimilar materials vacuum brazing. The junctions were obtained between copper or copper alloy and stainless steel. Different brazing parameters were used according to the different type of samples. By using optical microscope, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and micro-hardness machine to analyze the microstructure of copper or copper alloy/stainless steel vacuum brazing joins. The test results showed that copper (T2)/stainless steel (1Cr18Ni9Ti) dissimilar materials were successfully bonded together by means of the advanced vacuum brazing technology (the grade of filler metal was B-Ag72Cu). The interface zone of copper (T2)/stainless steel (1Cr18Ni9Ti) brazing bonded joint included the copper side interface, the middle brazing transition zone and stainless steel side. Some defects such as microfissures were also found in the brazing seam between copper alloy and stainless steel composite components obtained by vacuum brazing using B-AgCu21Pd25 filler metal. They are mainly due to the process and geometry parameters, such as temperature and clearance.


2020 ◽  
Vol 165 (11) ◽  
pp. 2605-2613
Author(s):  
Peifa Yu ◽  
Yining Wang ◽  
Yunlong Li ◽  
Yang Li ◽  
Zhijiang Miao ◽  
...  

AbstractNoroviruses are the main causative agents of acute viral gastroenteritis worldwide. However, no vaccine or specific antiviral treatment is available, imposing a heavy global health burden. The nucleoside analogue 2’-fluoro-2’-deoxycytidine (2’-FdC) has been reported to have broad antiviral activity. Here, we report that 2’-FdC significantly inhibits murine norovirus replication in macrophages. This effect was partially reversed by exogenous supplementation of cytidine triphosphate. The combination of 2’-FdC with mycophenolic acid, ribavirin or favipiravir (T705) exerts synergistic antiviral effects. These results indicate that 2’-FdC is a potential candidate for antiviral drug development against norovirus infection.


Author(s):  
Mohamed Ibrahim ◽  
Khaled Al-Athel ◽  
Abul Fazal M. Arif

Coatings are extensively used in many areas including industrial and medical fields to serve various functions as corrosion resistance, wear resistance and antibacterial purposes. Copper and copper alloys are among the most widely applied coating materials for several industrial and medical applications. One of their widely used copper coating applications is in the antibacterial coating area. Most of the research done in this field focuses on the antibacterial behavior with no comprehensive assessment regarding their mechanical properties, such as hardness and adhesion strength. In this work, mechanical assessment of strength and hardness of pure copper and several copper alloys including Cu Sn5% P0.6%, Cu Ni18 Zn14 (German silver), and Cu Al9 Fe1 are studied experimentally and numerically. All coatings are deposited on stainless steel substrate disks of 25mm diameter by wire-arc thermal spraying at the center of advanced coating technologies, University of Toronto. All coatings are 150 microns in thickness, with two additional thicknesses up to 350 microns for Cu Ni18 Zn14 (German silver) and Cu Al9 Fe1. The effect of the coating thickness and composition on the mechanical properties is studied for all the copper and copper alloy samples with the varying thicknesses between 150 and 350 microns. Scanning Electron Microscope (SEM) is used to study the surface as well as the cross-sectional microstructure of the coatings. Vickers micro-indentation tests are used to evaluate hardness at various locations on the cross-section of the coating and the substrate. This is used to evaluate the effect of the deposition of the coating material, and the subsequent solidification, on the hardness of the coating layer as well as the substrate near the coating interface. Pull-off adhesion tests are performed to evaluate the effect of the coating composition and thickness on the strength of the coatings. Tests are carried out to compute the pull-off failure stress that causes the delamination between the coating and the substrate. Computational analysis will be used to calibrate the experimental data when available by means of finite element analysis. The preliminary pull-off tests show interesting results as the samples with lower coating thicknesses exhibit delamination at higher strengths. This is due to the increase in residual stresses in higher thicknesses building up during the deposition process. Some of the samples did not even fail at lower thicknesses of 150 microns. A comprehensive analysis between the adhesion strength and hardness will be very useful in understanding the effect of coating composition and thickness on the mechanical properties of the coating.


Sign in / Sign up

Export Citation Format

Share Document