capsid integrity
Recently Published Documents


TOTAL DOCUMENTS

19
(FIVE YEARS 10)

H-INDEX

7
(FIVE YEARS 3)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Lionel Galibert ◽  
Amira Hyvönen ◽  
Reetta A. E. Eriksson ◽  
Salla Mattola ◽  
Vesa Aho ◽  
...  

AbstractWith a limited coding capacity of 4.7 kb, adeno-associated virus (AAV) genome has evolved over-lapping genes to maximise the usage of its genome. An example is the recently found ORF in the cap gene, encoding membrane-associated accessory protein (MAAP), located in the same genomic region as the VP1/2 unique domain, but in a different reading frame. This 13 KDa protein, unique to the dependovirus genus, is not homologous to any known protein. Our studies confirm that MAAP translation initiates from the first CTG codon found in the VP1 ORF2. We have further observed MAAP localised in the plasma membrane, in the membranous structures in close proximity to the nucleus and to the nuclear envelope by co-transfecting with plasmids encoding the wild-type AAV (wt-AAV) genome and adenovirus (Ad) helper genes. While keeping VP1/2 protein sequence identical, both inactivation and truncation of MAAP translation affected the emergence and intracellular distribution of the AAV capsid proteins. We have demonstrated that MAAP facilitates AAV replication and has a role in controlling Ad infection. Additionally, we were able to improve virus production and capsid integrity through a C-terminal truncation of MAAP while other modifications led to increased packaging of contaminating, non-viral DNA. Our results show that MAAP plays a significant role in AAV infection, with profound implications for the production of therapeutic AAV vectors.


Author(s):  
Vu Duc Canh ◽  
Shotaro Torii ◽  
Midori Yasui ◽  
Shigeru Kyuwa ◽  
Hiroyuki Katayama

2021 ◽  
Vol 118 (10) ◽  
pp. e2019467118
Author(s):  
Chenglei Li ◽  
Ryan C. Burdick ◽  
Kunio Nagashima ◽  
Wei-Shau Hu ◽  
Vinay K. Pathak

We recently reported that HIV-1 cores that retained >94% of their capsid (CA) protein entered the nucleus and disassembled (uncoated) near their integration site <1.5 h before integration. However, whether the nuclear capsids lost their integrity by rupturing or a small loss of CA before capsid disassembly was unclear. Here, we utilized a previously reported vector in which green fluorescent protein is inserted in HIV-1 Gag (iGFP); proteolytic processing efficiently releases GFP, some of which remains trapped inside capsids and serves as a fluid phase content marker that is released when the capsids lose their integrity. We found that nuclear capsids retained their integrity until shortly before integration and lost their GFP content marker ∼1 to 3 min before loss of capsid-associated mRuby-tagged cleavage and polyadenylation specificity factor 6 (mRuby-CPSF6). In contrast, loss of GFP fused to CA and mRuby-CPSF6 occurred simultaneously, indicating that viral cores retain their integrity until just minutes before uncoating. Our results indicate that HIV-1 evolved to retain its capsid integrity and maintain a separation between macromolecules in the viral core and the nuclear environment until uncoating occurs just before integration. These observations imply that intact HIV-1 capsids are imported through nuclear pores; that reverse transcription occurs in an intact capsid; and that interactions between the preintegration complex and LEDGF/p75, and possibly other host factors that facilitate integration, must occur during the short time period between loss of capsid integrity and integration.


2021 ◽  
Vol 189 ◽  
pp. 116674
Author(s):  
Vu Duc Canh ◽  
Shotaro Torii ◽  
Hiroaki Furumai ◽  
Hiroyuki Katayama

2020 ◽  
pp. 100080
Author(s):  
Mats Leifels ◽  
Cheng Dan ◽  
Emanuele Sozzi ◽  
David C. Shoults ◽  
Stefan Wuertz ◽  
...  

Author(s):  
Mats Leifels ◽  
Cheng Dan ◽  
Emanuele Sozzi ◽  
David C. Shoults ◽  
Stefan Wuertz ◽  
...  

AbstractCapsid-integrity quantitative PCR (qPCR), a molecular detection method for infectious viruses combining azo-dye pretreatment with qPCR, has been widely used in recent years; however, variations in pretreatment conditions for various virus types can limit the efficacy of specific protocols. By identifying and critically synthesizing forty-two recent peer-reviewed studies employing capsid-integrity qPCR for viruses in the last decade (2009 to 2019) in the fields of food safety and environmental virology, we aimed to establish recommendations for the detection of infectious viruses. Intercalating dyes are effective measures of viability in PCR assays provided the viral capsid is damaged; viruses that have been inactivated by other causes, such as loss of attachment or genomic damage, are less well detected using this approach. Although optimizing specific protocols for each virus is recommended, we identify a framework for general assay conditions. These include concentrations of ethidium monoazide, propidium monoazide or its derivates between 10 and 200 µM; incubation on ice or at room temperature (20 - 25°C) for 5 to 120 min; and dye activation using LED or high light (500 – 800 Watts) exposure for periods ranging from 5 to 20 min. These simple steps can benefit the investigation of infectious virus transmission in routine (water) monitoring settings and during viral outbreaks such as the current COVID-19 pandemic or endemic diseases like dengue fever.Graphical abstract


Water ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 1196 ◽  
Author(s):  
Mats Leifels ◽  
David Shoults ◽  
Alyssa Wiedemeyer ◽  
Nicholas J. Ashbolt ◽  
Emanuele Sozzi ◽  
...  

Recreational, reclaimed and drinking source waters worldwide are under increasing anthropogenic pressure, and often contain waterborne enteric bacterial, protozoan, and viral pathogens originating from non-point source fecal contamination. Recently, the capsid integrity (ci)-qPCR, utilizing the azo-dyes propidium monoazide (PMA) or ethidium monoazide (EMA), has been shown to reduce false-positive signals under laboratory conditions as well as in food safety applications, thus improving the qPCR estimation of virions of public health significance. The compatibility of two widely used human adenovirus (HAdV) qPCR protocols was evaluated with the addition of a PMA/EMA pretreatment using a range of spiked and environmental samples. Stock suspensions of HAdV were inactivated using heat, UV, and chlorine before being quantified by cell culture, qPCR, and ci-qPCR. Apparent inactivation of virions was detected for heat and chlorine treated HAdV while there was no significant difference between ci-qPCR and qPCR protocols after disinfection by UV. In a follow-up comparative analysis under more complex matrix conditions, 51 surface and 24 wastewater samples pre/post UV treatment were assessed for enteric waterborne HAdV to evaluate the ability of ci-qPCR to reduce the number of false-positive results when compared to conventional qPCR and cell culture. Azo-dye pretreatment of non-UV inactivated samples was shown to improve the ability of molecular HAdV quantification by reducing signals from virions with an accessible genome, thereby increasing the relevance of qPCR results for public health purposes, particularly suited to resource-limited low and middle-income settings.


2019 ◽  
Vol 11 (3) ◽  
pp. 229-237 ◽  
Author(s):  
David I. Walker ◽  
Lisa J. Cross ◽  
Tina A. Stapleton ◽  
Connaire L. Jenkins ◽  
David N. Lees ◽  
...  

2019 ◽  
Vol 93 (9) ◽  
Author(s):  
Anthony J. Snyder ◽  
Pranav Danthi

ABSTRACTThe environment represents a significant barrier to infection. Physical stressors (heat) or chemical agents (ethanol) can render virions noninfectious. As such, discrete proteins are necessary to stabilize the dual-layered structure of mammalian orthoreovirus (reovirus). The outer capsid participates in cell entry: (i) σ3 is degraded to generate the infectious subviral particle, and (ii) μ1 facilitates membrane penetration and subsequent core delivery. μ1-σ3 interactions also prevent inactivation; however, this activity is not fully characterized. Using forward and reverse genetic approaches, we identified two mutations (μ1 M258I and σ3 S344P) within heat-resistant strains. σ3 S344P was sufficient to enhance capsid integrity and to reduce protease sensitivity. Moreover, these changes impaired replicative fitness in a reassortant background. This work reveals new details regarding the determinants of reovirus stability.IMPORTANCENonenveloped viruses rely on protein-protein interactions to shield their genomes from the environment. The capsid, or protective shell, must also disassemble during cell entry. In this work, we identified a determinant within mammalian orthoreovirus that regulates heat resistance, disassembly kinetics, and replicative fitness. Together, these findings show capsid function is balanced for optimal replication and for spread to a new host.


2019 ◽  
Author(s):  
Anthony J. Snyder ◽  
Pranav Danthi

ABSTRACTThe environment represents a significant barrier to infection. Physical stressors (heat) or chemical agents (ethanol and sodium dodecyl sulfate) can render virions noninfectious. As such, discrete proteins are necessary to stabilize the dual layered structure of mammalian orthoreovirus (reovirus). The outer capsid participates in cell entry: (i) σ3 is degraded to generate the infectious subviral particle and (ii) μ1 facilitates membrane penetration and subsequent core delivery. μ1-σ3 interactions also prevent inactivation; however, this activity is not fully characterized. Using forward and reverse genetic approaches, we identified two mutations (μ1 M258I and σ3 S344P) within heat resistant strains. σ3 S344P was sufficient to enhance capsid integrity and to reduce protease sensitivity. Moreover, these changes impaired replicative fitness in a reassortant background. This work reveals new details regarding the determinants of reovirus stability.SIGNIFICANCENonenveloped viruses rely on protein-protein interactions to shield their genomes from the environment. The capsid, or protective shell, must also disassemble during cell entry. In this work, we identified a determinant within mammalian orthoreovirus that regulates heat resistance, disassembly kinetics, and replicative fitness. Together, capsid function is balanced for optimal replication and for spread to a new host.


Sign in / Sign up

Export Citation Format

Share Document