scholarly journals Characterization of the Denitrification-Associated Phosphorus Uptake Properties of “Candidatus Accumulibacter phosphatis” Clades in Sludge Subjected to Enhanced Biological Phosphorus Removal

2013 ◽  
Vol 79 (6) ◽  
pp. 1969-1979 ◽  
Author(s):  
Jeong Myeong Kim ◽  
Hyo Jung Lee ◽  
Dae Sung Lee ◽  
Che Ok Jeon

ABSTRACTTo characterize the denitrifying phosphorus (P) uptake properties of “CandidatusAccumulibacter phosphatis,” a sequencing batch reactor (SBR) was operated with acetate. The SBR operation was gradually acclimated from anaerobic-oxic (AO) to anaerobic-anoxic-oxic (A2O) conditions by stepwise increases of nitrate concentration and the anoxic time. The communities of “Ca. Accumulibacter” and associated bacteria at the initial (AO) and final (A2O) stages were compared using 16S rRNA and polyphosphate kinase genes and using fluorescencein situhybridization (FISH). The acclimation process led to a clear shift in the relative abundances of recognized “Ca. Accumulibacter” subpopulations from clades IIA > IA > IIF to clades IIC > IA > IIF, as well as to increases in the abundance of other associated bacteria (Dechloromonas[from 1.2% to 19.2%] and “CandidatusCompetibacter phosphatis” [from 16.4% to 20.0%]), while the overall “Ca. Accumulibacter” abundance decreased (from 55.1% to 29.2%). A series of batch experiments combined with FISH/microautoradiography (MAR) analyses was performed to characterize the denitrifying P uptake properties of the “Ca. Accumulibacter” clades. In FISH/MAR experiments using slightly diluted sludge (∼0.5 g/liter), all “Ca. Accumulibacter” clades successfully took up phosphorus in the presence of nitrate. However, the “Ca. Accumulibacter” clades showed no P uptake in the presence of nitrate when the sludge was highly diluted (∼0.005 g/liter); under these conditions, reduction of nitrate to nitrite did not occur, whereas P uptake by “Ca. Accumulibacter” clades occurred when nitrite was added. These results suggest that the “Ca. Accumulibacter” cells lack nitrate reduction capabilities and that P uptake by “Ca. Accumulibacter” is dependent upon nitrite generated by associated nitrate-reducing bacteria such asDechloromonasand “Ca. Competibacter.”

2015 ◽  
Vol 72 (7) ◽  
pp. 1147-1154 ◽  
Author(s):  
Pan Yu Wong ◽  
Maneesha P. Ginige ◽  
Anna H. Kaksonen ◽  
Ralf Cord-Ruwisch ◽  
David C. Sutton ◽  
...  

A biofilm process, termed enhanced biological phosphorus removal and recovery (EBPR-r), was recently developed as a post-denitrification approach to facilitate phosphorus (P) recovery from wastewater. Although simultaneous P uptake and denitrification was achieved despite substantial intrusion of dissolved oxygen (DO >6 mg/L), to what extent DO affects the process was unclear. Hence, in this study a series of batch experiments was conducted to assess the activity of the biofilm under various DO concentrations. The biofilm was first allowed to store acetate (as internal storage) under anaerobic conditions, and was then subjected to various conditions for P uptake (DO: 0–8 mg/L; nitrate: 10 mg-N/L; phosphate: 8 mg-P/L). The results suggest that even at a saturating DO concentration (8 mg/L), the biofilm could take up P and denitrify efficiently (0.70 mmol e−/g total solids*h). However, such aerobic denitrification activity was reduced when the biofilm structure was physically disturbed, suggesting that this phenomenon was a consequence of the presence of oxygen gradient across the biofilm. We conclude that when a biofilm system is used, EBPR-r can be effectively operated as a post-denitrification process, even when oxygen intrusion occurs.


1985 ◽  
Vol 17 (11-12) ◽  
pp. 113-118 ◽  
Author(s):  
R. M. Gersberg ◽  
D. W. Allen

The objective of our study was to show that pure cultures of Klebsiella pneumoniae and Acinetobacter calcoaceticus could be Induced to accumulate large amounts of phosphorus (P), when P-starved cultures were enriched with phosphorus either in suspended growth or immobilized cell reactors. Suspended growth cultures of K. pneumoniae were more efficient than those of A. calcoaceticus, with specific uptake rates of 14.1 - 17.1 mg P1−1 hr−1 per O.D. unit, and 5.4 - 10.0 mg P1−1 hr −1 per O.D. unit, respectively. The absolute rate of P accumulation of 24.6 mg P1−1 hr−1 measured for a K. pneumoniae culture was among the highest ever reported in the literature. In an immobilized cell system, which facilitates the separation of the cells (for recycling) from the liquid phase, K. pneumoniae cells entrapped in agar gel beads, remained viable and showed rates of P uptake of 6.1 and 7.9 mg P1−1 hr−1. K. pneumoniae cultures also showed a high capacity for removing dissolved phosphate from municipal wastewater, with greater than 95% P removal in two hours. These studies suggest the important role such high-phosphate accumulating bacteria may play in wastewater treatment systems designed for enhanced biological phosphorus removal.


2001 ◽  
Vol 43 (3) ◽  
pp. 183-189 ◽  
Author(s):  
C. Y. Dassanayake ◽  
R. L. Irvine

A control strategy was developed for enhanced biological phosphorus removal (EBPR) in a Sequencing Batch Reactor (SBR). Unlike past research that focused on maximizing polyhdroxyalkanoate (PHA) formation during the anaerobic period, this study investigated some of the factors that govern aerobic PHA dynamics and its efficient regulation during phosphate (P) uptake. Influent COD, influent P, and the time for aeration were critical factors that governed PHA use and P uptake during aerated react. Unnecessary PHA oxidation (i.e., in the absence of extracellular P) occurred if the time for aerated react exceeded the time required for P uptake. By adjusting the aeration time to that required for P uptake, residual PHA was sustained in the SBR and excess phosphate uptake reaction potential (PRP) was generated for use during transient influent excursions in P. Unlike space oriented systems, the time for react is simply adjusted in the SBR. Because residual PHA is easily maintained once achieved, high influent COD events can be harnessed to increase or sustain excess PRP for management of expected variations in influent P.


2012 ◽  
Vol 65 (5) ◽  
pp. 840-844 ◽  
Author(s):  
D. Wu ◽  
T. Hao ◽  
H. Lu ◽  
H. K. Chui ◽  
M. C. M. van Loosdrecht ◽  
...  

This study explored a sulfur cycle-associated biological phosphorus (P) removal process in a covered and non-aerated sequencing batch reactor (SBR) fed with volatile fatty acid (VFA) and sulfate separately. During the 60-day start-up, both phosphate release and uptake rates increased, while poly-phosphate cyclically increased and decreased accordingly. The P-release and P-uptake rates were associated with VFA uptake and sulfate reduction. The average ratio of potassium to phosphate during the P-uptake and P-release was also determined to be 0.29–0.31 mol K/mol P, which is close to a reported value (0.33) for biological phosphorus removal. All this evidence confirmed there was biological P removal in this reactor, in which metabolism could be different from conventional biological P removal.


2004 ◽  
Vol 50 (10) ◽  
pp. 145-152 ◽  
Author(s):  
J. Serralta ◽  
L. Borrás ◽  
C. Blanco ◽  
R. Barat ◽  
A. Seco

This paper presents laboratory-scale experimentation carried out to study enhanced biological phosphorus removal. Two anaerobic aerobic (A/O) sequencing batch reactors (SBR) have been operated during more than one year to investigate the information provided by monitoring pH and electric conductivity under stationary and transient conditions. Continuous measurements of these parameters allow detecting the end of anaerobic phosphorus release, of aerobic phosphorus uptake and of initial denitrification, as well as incomplete acetic acid uptake. These results suggest the possibility of using pH and electric conductivity as control parameters to determine the length of both anaerobic and aerobic phases in an A/O SBR. More valuable information provided by monitoring pH and electric conductivity is the relation between the amount of phosphorus released and the conductivity increase observed during the anaerobic stages and which group of bacteria (heterotrophic or polyphosphate accumulating) is carrying out the denitrification process.


2010 ◽  
Vol 61 (8) ◽  
pp. 2105-2112 ◽  
Author(s):  
Maite Pijuan ◽  
Zhiguo Yuan

A sequencing batch reactor (SBR) was used for the treatment of abattoir wastewater to produce effluent with desirable nitrogen and phosphorus levels for irrigation. The SBR cycle consisted of an anaerobic phase with wastewater feeding, a relatively short aerobic period (allowing full ammonium oxidation), a second anoxic period with feeding, followed by settling and decanting. This design of operation allowed biological nitrification and denitrification via nitrite, and therefore with reduced demand for aeration and COD for nitrogen removal. The design also allowed ammonium, rather than oxidized nitrogen, being the primary nitrogen species in the effluent. Biological phosphorus removal was also achieved, with an effluent level desirable for irrigation. A high-level of nitrite accumulation (40 mg N/L) in the reactor caused inhibition to the biological P uptake. This problem was solved through process optimization. The cycle time of the SBR was reduced, with the wastewater load per cycle also reduced, while the daily hydraulic loading maintained. This modification proved to be an effective method to ensure reliable N and P removal. N2O accumulation was measured in two experiments simulating the anoxic phase of the SBR and using nitrite and nitrate respectively as electron donors. The estimated N2O emissions for both experiments were very low.


2020 ◽  
Vol 105 (1) ◽  
pp. 379-388
Author(s):  
Danny R. de Graaff ◽  
Mark C. M. van Loosdrecht ◽  
Mario Pronk

Abstract Candidatus Accumulibacter phosphatis is an important microorganism for enhanced biological phosphorus removal (EBPR). In a previous study, we found a remarkable flexibility regarding salinity, since this same microorganism could thrive in both freshwater- and seawater-based environments, but the mechanism for the tolerance to saline conditions remained unknown. Here, we identified and described the role of trehalose as an osmolyte in Ca. Accumulibacter phosphatis. A freshwater-adapted culture was exposed to a single batch cycle of hyperosmotic and hypo-osmotic shock, which led to the release of trehalose up to 5.34 mg trehalose/g volatile suspended solids (VSS). Long-term adaptation to 30% seawater-based medium in a sequencing batch reactor (SBR) gave a stable operation with complete anaerobic uptake of acetate and propionate along with phosphate release of 0.73 Pmol/Cmol, and complete aerobic uptake of phosphate. Microbial analysis showed Ca. Accumulibacter phosphatis clade I as the dominant organism in both the freshwater- and seawater-adapted cultures (> 90% presence). Exposure of the seawater-adapted culture to a single batch cycle of hyperosmotic incubation and hypo-osmotic shock led to an increase in trehalose release upon hypo-osmotic shock when higher salinity is used for the hyperosmotic incubation. Maximum trehalose release upon hypo-osmotic shock was achieved after hyperosmotic incubation with 3× salinity increase relative to the salinity in the SBR adaptation reactor, resulting in the release of 11.9 mg trehalose/g VSS. Genome analysis shows the possibility of Ca. Accumulibacter phosphatis to convert glycogen into trehalose by the presence of treX, treY, and treZ genes. Addition of trehalose to the reactor led to its consumption, both during anaerobic and aerobic phases. These results indicate the flexibility of the metabolism of Ca. Accumulibacter phosphatis towards variations in salinity. Key points • Trehalose is identified as an osmolyte in Candidatus Accumulibacter phosphatis. • Ca. Accumulibacter phosphatis can convert glycogen into trehalose. • Ca. Accumulibacter phosphatis clade I is present and active in both seawater and freshwater.


1994 ◽  
Vol 30 (6) ◽  
pp. 263-269 ◽  
Author(s):  
T. Kuba ◽  
A. Wachtmeister ◽  
M. C. M. van Loosdrecht ◽  
J. J. Heijnen

The effect of nitrate on phosphorus release by biological phosphorus removing organisms has been studied. Denitrifying (DPB) or aerobic phosphorus removing bacteria were enriched in an anaerobic-anoxic or anaerobic-aerobic sequencing batch reactor (SBR). The enrichment sludges were used in batch tests, in which the effect of simultaneous presence of substrate (HAc) and nitrate was studied on the phosphorus release. It could be concluded that a reduction of the phosphorus release by nitrate in biological phosphorus removal systems is partly due to the presence of DPB, which utilize HAc for denitrification, not for phosphorus release. PHB (poly-β-hydroxybutyrate) was always produced and phosphorus was released by DPB sludge when nitrate and HAc were simultaneously present. The reducing power (NADH2) and the energy (ATP) for this process seemed to be obtained from HAc oxidation by nitrate as well as from polyphosphate degradation. After removal of the HAc, PHB degradation and phosphorus uptake occurred.


2018 ◽  
Vol 85 (3) ◽  
Author(s):  
Sven Lahme ◽  
Dennis Enning ◽  
Cameron M. Callbeck ◽  
Demelza Menendez Vega ◽  
Thomas P. Curtis ◽  
...  

ABSTRACTOil reservoir souring and associated material integrity challenges are of great concern to the petroleum industry. The bioengineering strategy of nitrate injection has proven successful for controlling souring in some cases, but recent reports indicate increased corrosion in nitrate-treated produced water reinjection facilities. Sulfide-oxidizing, nitrate-reducing bacteria (soNRB) have been suggested to be the cause of such corrosion. Using the model soNRBSulfurimonassp. strain CVO obtained from an oil field, we conducted a detailed analysis of soNRB-induced corrosion at initial nitrate-to-sulfide (N/S) ratios relevant to oil field operations. The activity of strain CVO caused severe corrosion rates of up to 0.27 millimeters per year (mm y−1) and up to 60-μm-deep pitting within only 9 days. The highest corrosion during the growth of strain CVO was associated with the production of zero-valent sulfur during sulfide oxidation and the accumulation of nitrite, when initial N/S ratios were high. Abiotic corrosion tests with individual metabolites confirmed biogenic zero-valent sulfur and nitrite as the main causes of corrosion under the experimental conditions. Mackinawite (FeS) deposited on carbon steel surfaces accelerated abiotic reduction of both sulfur and nitrite, exacerbating corrosion. Based on these results, a conceptual model for nitrate-mediated corrosion by soNRB is proposed.IMPORTANCEAmbiguous reports of corrosion problems associated with the injection of nitrate for souring control necessitate a deeper understanding of this frequently applied bioengineering strategy. Sulfide-oxidizing, nitrate-reducing bacteria have been proposed as key culprits, despite the underlying microbial corrosion mechanisms remaining insufficiently understood. This study provides a comprehensive characterization of how individual metabolic intermediates of the microbial nitrogen and sulfur cycles can impact the integrity of carbon steel infrastructure. The results help explain the dramatic increases seen at times in corrosion rates observed during nitrate injection in field and laboratory trials and point to strategies for reducing adverse integrity-related side effects of nitrate-based souring mitigation.


1993 ◽  
Vol 27 (5-6) ◽  
pp. 241-252 ◽  
Author(s):  
T. Kuba ◽  
G. Smolders ◽  
M. C. M. van Loosdrecht ◽  
J. J. Heijnen

In this study an anaerobic-anoxic SBR (sequencing batch reactor) was used in order to investigate the possibility of phosphorus removal utilizing nitrate as an electron acceptor, instead of oxygen in biological phosphorus removal processes. The reactor was supplied with synthetic wastewater, in which acetic acid (HAc) and phosphate were added at concentrations of 400 mg-COD/l and 15 mg-P/l. A conventional anaerobic-aerobic SBR was also operated to compare with the anaerobic-anoxic SBR. The objectives of this research are to examine (i) feasibility and stability of the systems, (ii) kinetics and stoichiometry of phosphorus release and uptake. The anaerobic-anoxic SBR operation resulted in a stable phosphorus removal and accumulation of phosphorus removing bacteria using nitrate as an electron acceptor. Immediately after inoculation from a phosphorus removing plant (Renpho system) phosphorus uptake was observed, indicating that phosphorus removing bacteria which are able to utilize nitrate were already present in conventional phosphorus removing sludge. Comparison of stoichiometry and kinetics with the conventional anaerobic-aerobic SBR system shows a similar potential for phosphorus removal by denitrifying organisms. Therefore in the design of phosphorus removal processes one should not be afraid of nitrate, but use it.


Sign in / Sign up

Export Citation Format

Share Document