scholarly journals Quantitative FluorescenceIn SituHybridization Analysis of Microbial Consortia from a Biogenic Gas Field in Alaska's Cook Inlet Basin

2012 ◽  
Vol 78 (10) ◽  
pp. 3599-3605 ◽  
Author(s):  
Katherine S. Dawson ◽  
Dariusz Strąpoć ◽  
Brad Huizinga ◽  
Ulrika Lidstrom ◽  
Matt Ashby ◽  
...  

ABSTRACTFilter-collected production water samples from a methane-rich gas field in the Cook Inlet basin of Alaska were investigated using whole-cell rRNA-targeted fluorescencein situhybridization (FISH) and 16S rRNA tag pyrosequencing. Both techniques were consistent in determining the microbial community composition, including the archaeal or bacterial dominance of samples. The archaeal community is dominated by the obligate methylotrophic methanogen genusMethanolobusas well as the nutritional generalist methanogen genusMethanosarcina, which is capable of utilizing acetate, CO2, and methyl-bearing compounds. The most-abundant bacterial groups areFirmicutes, notably of theAcetobacteriumgenus, andCytophaga-Flexibacter-Bacteroidesspecies (CFBs) affiliated with the orderBacteroidales. We observed spatial variation among samples in both the percentage of members ofArchaeacompared to that of members ofBacteriaand the dominant members of the bacterial community, differences which could not be explained with the available geochemical data. Based upon the microbial community composition and the isotopic signature of methane associated with the Cook Inlet basin site, we propose a simplified reaction network beginning with the breakdown of coal macromolecules, followed by fermentation and methylotrophic and acetoclastic methane production.

2016 ◽  
Vol 83 (4) ◽  
Author(s):  
Nastassia V. Patin ◽  
Michelle Schorn ◽  
Kristen Aguinaldo ◽  
Tommie Lincecum ◽  
Bradley S. Moore ◽  
...  

ABSTRACT Marine sediments harbor complex microbial communities that remain poorly studied relative to other biomes such as seawater. Moreover, bacteria in these communities produce antibiotics and other bioactive secondary metabolites, yet little is known about how these compounds affect microbial community structure. In this study, we used next-generation amplicon sequencing to assess native microbial community composition in shallow tropical marine sediments. The results revealed complex communities comprised of largely uncultured taxa, with considerable spatial heterogeneity and known antibiotic producers comprising only a small fraction of the total diversity. Organic extracts from cultured strains of the sediment-dwelling actinomycete genus Salinispora were then used in mesocosm studies to address how secondary metabolites shape sediment community composition. We identified predatory bacteria and other taxa that were consistently reduced in the extract-treated mesocosms, suggesting that they may be the targets of allelopathic interactions. We tested related taxa for extract sensitivity and found general agreement with the culture-independent results. Conversely, several taxa were enriched in the extract-treated mesocosms, suggesting that some bacteria benefited from the interactions. The results provide evidence that bacterial secondary metabolites can have complex and significant effects on sediment microbial communities. IMPORTANCE Ocean sediments represent one of Earth's largest and most poorly studied biomes. These habitats are characterized by complex microbial communities where competition for space and nutrients can be intense. This study addressed the hypothesis that secondary metabolites produced by the sediment-inhabiting actinomycete Salinispora arenicola affect community composition and thus mediate interactions among competing microbes. Next-generation amplicon sequencing of mesocosm experiments revealed complex communities that shifted following exposure to S. arenicola extracts. The results reveal that certain predatory bacteria were consistently less abundant following exposure to extracts, suggesting that microbial metabolites mediate competitive interactions. Other taxa increased in relative abundance, suggesting a benefit from the extracts themselves or the resulting changes in the community. This study takes a first step toward assessing the impacts of bacterial metabolites on sediment microbial communities. The results provide insight into how low-abundance organisms may help structure microbial communities in ocean sediments.


2018 ◽  
Vol 200 (24) ◽  
Author(s):  
Cajetan Neubauer ◽  
Ajay S. Kasi ◽  
Nora Grahl ◽  
Alex L. Sessions ◽  
Sebastian H. Kopf ◽  
...  

ABSTRACT Chronic lung infections in cystic fibrosis (CF) could be treated more effectively if the effects of antimicrobials on pathogens in situ were known. Here, we compared changes in the microbial community composition and pathogen growth rates in longitudinal studies of seven pediatric CF patients undergoing intravenous antibiotic administration during pulmonary exacerbations. The microbial community composition was determined by counting rRNA with NanoString DNA analysis, and growth rates were obtained by incubating CF sputum with heavy water and tracing incorporation of deuterium into two branched-chain (“anteiso”) fatty acids (a-C15:0 and a-C17:0) using gas chromatography-mass spectrometry (GC/MS). Prior to this study, both lipids were thought to be specific for Staphylococcaceae; hence, their isotopic enrichment was interpreted as a growth proxy for Staphylococcus aureus. Our experiments revealed, however, that Prevotella is also a relevant microbial producer of a-C17:0 fatty acid in some CF patients; thus, deuterium incorporation into these lipids is better interpreted as a more general pathogen growth rate proxy. Even accounting for a small nonmicrobial background source detected in some patient samples, a-C15:0 fatty acid still appears to be a relatively robust proxy for CF pathogens, revealing a median generation time of ∼1.5 days, similar to prior observations. Contrary to our expectation, pathogen growth rates remained relatively stable throughout exacerbation treatment. We suggest two straightforward “best practices” for application of stable-isotope probing to CF sputum metabolites: (i) parallel determination of microbial community composition in CF sputum using culture-independent tools and (ii) assessing background levels of the diagnostic metabolite. IMPORTANCE In chronic lung infections, populations of microbial pathogens change and mature in ways that are often unknown, which makes it challenging to identify appropriate treatment options. A promising tool to better understand the physiology of microorganisms in a patient is stable-isotope probing, which we previously developed to estimate the growth rates of S. aureus in cystic fibrosis (CF) sputum. Here, we tracked microbial communities in a cohort of CF patients and found that anteiso fatty acids can also originate from other sources in CF sputum. This awareness led us to develop a new workflow for the application of stable-isotope probing in this context, improving our ability to estimate pathogen generation times in clinical samples.


2014 ◽  
Vol 80 (11) ◽  
pp. 3518-3530 ◽  
Author(s):  
Xueju Lin ◽  
Malak M. Tfaily ◽  
J. Megan Steinweg ◽  
Patrick Chanton ◽  
Kaitlin Esson ◽  
...  

ABSTRACTThis study investigated the abundance, distribution, and composition of microbial communities at the watershed scale in a boreal peatland within the Marcell Experimental Forest (MEF), Minnesota, USA. Through a close coupling of next-generation sequencing, biogeochemistry, and advanced analytical chemistry, a biogeochemical hot spot was revealed in the mesotelm (30- to 50-cm depth) as a pronounced shift in microbial community composition in parallel with elevated peat decomposition. The relative abundance ofAcidobacteriaand theSyntrophobacteraceae, including known hydrocarbon-utilizing genera, was positively correlated with carbohydrate and organic acid content, showing a maximum in the mesotelm. The abundance ofArchaea(primarily crenarchaeal groups 1.1c and 1.3) increased with depth, reaching up to 60% of total small-subunit (SSU) rRNA gene sequences in the deep peat below the 75-cm depth. Stable isotope geochemistry and potential rates of methane production paralleled vertical changes in methanogen community composition to indicate a predominance of acetoclastic methanogenesis mediated by theMethanosarcinalesin the mesotelm, while hydrogen-utilizing methanogens predominated in the deeper catotelm. RNA-derived pyrosequence libraries corroborated DNA sequence data to indicate that the above-mentioned microbial groups are metabolically active in the mid-depth zone. Fungi showed a maximum in rRNA gene abundance above the 30-cm depth, which comprised only an average of 0.1% of total bacterial and archaeal rRNA gene abundance, indicating prokaryotic dominance. Ratios of C to P enzyme activities approached 0.5 at the acrotelm and catotelm, indicating phosphorus limitation. In contrast, P limitation pressure appeared to be relieved in the mesotelm, likely due to P solubilization by microbial production of organic acids and C-P lyases. Based on path analysis and the modeling of community spatial turnover, we hypothesize that P limitation outweighs N limitation at MEF, and microbial communities are structured by the dominant shrub,Chamaedaphne calyculata, which may act as a carbon source for major consumers in the peatland.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Sally L. Bornbusch ◽  
Rachel L. Harris ◽  
Nicholas M. Grebe ◽  
Kimberly Roche ◽  
Kristin Dimac-Stohl ◽  
...  

Abstract Background Antibiotics alter the diversity, structure, and dynamics of host-associated microbial consortia, including via development of antibiotic resistance; however, patterns of recovery from microbial imbalances and methods to mitigate associated negative effects remain poorly understood, particularly outside of human-clinical and model-rodent studies that focus on outcome over process. To improve conceptual understanding of host-microbe symbiosis in more naturalistic contexts, we applied an ecological framework to a non-traditional, strepsirrhine primate model via long-term, multi-faceted study of microbial community structure before, during, and following two experimental manipulations. Specifically, we administered a broad-spectrum antibiotic, either alone or with subsequent fecal transfaunation, to healthy, male ring-tailed lemurs (Lemur catta), then used 16S rRNA and shotgun metagenomic sequencing to longitudinally track the diversity, composition, associations, and resistomes of their gut microbiota both within and across baseline, treatment, and recovery phases. Results Antibiotic treatment resulted in a drastic decline in microbial diversity and a dramatic alteration in community composition. Whereas microbial diversity recovered rapidly regardless of experimental group, patterns of microbial community composition reflected long-term instability following treatment with antibiotics alone, a pattern that was attenuated by fecal transfaunation. Covariation analysis revealed that certain taxa dominated bacterial associations, representing potential keystone species in lemur gut microbiota. Antibiotic resistance genes, which were universally present, including in lemurs that had never been administered antibiotics, varied across individuals and treatment groups. Conclusions Long-term, integrated study post antibiotic-induced microbial imbalance revealed differential, metric-dependent evidence of recovery, with beneficial effects of fecal transfaunation on recovering community composition, and potentially negative consequences to lemur resistomes. Beyond providing new perspectives on the dynamics that govern host-associated communities, particularly in the Anthropocene era, our holistic study in an endangered species is a first step in addressing the recent, interdisciplinary calls for greater integration of microbiome science into animal care and conservation.


2015 ◽  
Vol 81 (6) ◽  
pp. 2173-2181 ◽  
Author(s):  
E. Marie Muehe ◽  
Pascal Weigold ◽  
Irini J. Adaktylou ◽  
Britta Planer-Friedrich ◽  
Ute Kraemer ◽  
...  

ABSTRACTThe remediation of metal-contaminated soils by phytoextraction depends on plant growth and plant metal accessibility. Soil microorganisms can affect the accumulation of metals by plants either by directly or indirectly stimulating plant growth and activity or by (im)mobilizing and/or complexing metals. Understanding the intricate interplay of metal-accumulating plants with their rhizosphere microbiome is an important step toward the application and optimization of phytoremediation. We compared the effects of a “native” and a strongly disturbed (gamma-irradiated) soil microbial communities on cadmium and zinc accumulation by the plantArabidopsis halleriin soil microcosm experiments.A. halleriaccumulated 100% more cadmium and 15% more zinc when grown on the untreated than on the gamma-irradiated soil. Gamma irradiation affected neither plant growth nor the 1 M HCl-extractable metal content of the soil. However, it strongly altered the soil microbial community composition and overall cell numbers. Pyrosequencing of 16S rRNA gene amplicons of DNA extracted from rhizosphere samples ofA. halleriidentified microbial taxa (Lysobacter,Streptomyces,Agromyces,Nitrospira, “CandidatusChloracidobacterium”) of higher relative sequence abundance in the rhizospheres ofA. halleriplants grown on untreated than on gamma-irradiated soil, leading to hypotheses on their potential effect on plant metal uptake. However, further experimental evidence is required, and wherefore we discuss different mechanisms of interaction ofA. halleriwith its rhizosphere microbiome that might have directly or indirectly affected plant metal accumulation. Deciphering the complex interactions betweenA. halleriand individual microbial taxa will help to further develop soil metal phytoextraction as an efficient and sustainable remediation strategy.


2011 ◽  
Vol 77 (19) ◽  
pp. 6908-6917 ◽  
Author(s):  
Hyung Soo Park ◽  
Indranil Chatterjee ◽  
Xiaoli Dong ◽  
Sheng-Hung Wang ◽  
Christoph W. Sensen ◽  
...  

ABSTRACTPipelines transporting brackish subsurface water, used in the production of bitumen by steam-assisted gravity drainage, are subject to frequent corrosion failures despite the addition of the oxygen scavenger sodium bisulfite (SBS). Pyrosequencing of 16S rRNA genes was used to determine the microbial community composition for planktonic samples of transported water and for sessile samples of pipe-associated solids (PAS) scraped from pipeline cutouts representing corrosion failures. These were obtained from upstream (PAS-616P) and downstream (PAS-821TP and PAS-821LP, collected under rapid-flow and stagnant conditions, respectively) of the SBS injection point. Most transported water samples had a large fraction (1.8% to 97% of pyrosequencing reads) ofPseudomonasnot found in sessile pipe samples. The sessile population of PAS-616P had methanogens (Methanobacteriaceae) as the main (56%) community component, whereasDeltaproteobacteriaof the generaDesulfomicrobiumandDesulfocapsawere not detected. In contrast, PAS-821TP and PAS-821LP had lower fractions (41% and 0.6%) ofMethanobacteriaceaearchaea but increased fractions of sulfate-reducingDesulfomicrobium(18% and 48%) and of bisulfite-disproportionatingDesulfocapsa(35% and 22%) bacteria. Hence, SBS injection strongly changed the sessile microbial community populations. X-ray diffraction analysis of pipeline scale indicated that iron carbonate was present both upstream and downstream, whereas iron sulfide and sulfur were found only downstream of the SBS injection point, suggesting a contribution of the bisulfite-disproportionating and sulfate-reducing bacteria in the scale to iron corrosion. Incubation of iron coupons with pipeline waters indicated iron corrosion coupled to the formation of methane. Hence, both methanogenic and sulfidogenic microbial communities contributed to corrosion of pipelines transporting these brackish waters.


2015 ◽  
Vol 81 (17) ◽  
pp. 5855-5866 ◽  
Author(s):  
Etienne Yergeau ◽  
Christine Maynard ◽  
Sylvie Sanschagrin ◽  
Julie Champagne ◽  
David Juck ◽  
...  

ABSTRACTSeveral studies have assessed the effects of the released oil on microbes, either during or immediately after the Deepwater Horizon accident. However, little is known about the potential longer-term persistent effects on microbial communities and their functions. In this study, one water column station near the wellhead (3.78 km southwest of the wellhead), one water column reference station outside the affected area (37.77 km southeast of the wellhead), and deep-sea sediments near the wellhead (3.66 km southeast of the wellhead) were sampled 1 year after the capping of the well. In order to analyze microbial community composition, function, and activity, we used metagenomics, metatranscriptomics, and mineralization assays. Mineralization of hexadecane was significantly higher at the wellhead station at a depth of ∼1,200 m than at the reference station. Community composition based on taxonomical or functional data showed that the samples taken at a depth of ∼1,200 m were significantly more dissimilar between the stations than at other depths (surface, 100 m, 750 m, and >1,500 m). BothBacteriaandArchaeashowed reduced activity at depths of ∼1,200 m when the wellhead station was compared to the reference station, and their activity was significantly higher in surficial sediments than in 10-cm sediments. Surficial sediments also harbored significantly different active genera than did 5- and 10-cm sediments. For the remaining microbial parameters assessed, no significant differences could be observed between the wellhead and reference stations and between surface and 5- to 10-cm-deep sediments.


2012 ◽  
Vol 79 (2) ◽  
pp. 619-630 ◽  
Author(s):  
Nora B. Sutton ◽  
Farai Maphosa ◽  
Jose A. Morillo ◽  
Waleed Abu Al-Soud ◽  
Alette A. M. Langenhoff ◽  
...  

ABSTRACTMicrobial community composition and diversity at a diesel-contaminated railway site were investigated by pyrosequencing of bacterial and archaeal 16S rRNA gene fragments to understand the interrelationships among microbial community composition, pollution level, and soil geochemical and physical properties. To this end, 26 soil samples from four matrix types with various geochemical characteristics and contaminant concentrations were investigated. The presence of diesel contamination significantly impacted microbial community composition and diversity, regardless of the soil matrix type. Clean samples showed higher diversity than contaminated samples (P< 0.001). Bacterial phyla with high relative abundances in all samples includedProteobacteria,Firmicutes,Actinobacteria,Acidobacteria, andChloroflexi. High relative abundances ofArchaea, specifically of the phylumEuryarchaeota, were observed in contaminated samples. Redundancy analysis indicated that increased relative abundances of the phylaChloroflexi,Firmicutes, andEuryarchaeotacorrelated with the presence of contamination. Shifts in the chemical composition of diesel constituents across the site and the abundance of specific operational taxonomic units (OTUs; defined using a 97% sequence identity threshold) in contaminated samples together suggest that natural attenuation of contamination has occurred. OTUs with sequence similarity to strictly anaerobicAnaerolineaewithin theChloroflexi, as well as toMethanosaetaof the phylumEuryarchaeota, were detected.AnaerolineaeandMethanosaetaare known to be associated with anaerobic degradation of oil-related compounds; therefore, their presence suggests that natural attenuation has occurred under anoxic conditions. This research underscores the usefulness of next-generation sequencing techniques both to understand the ecological impact of contamination and to identify potential molecular proxies for detection of natural attenuation.


2017 ◽  
Vol 84 (3) ◽  
Author(s):  
Max Reumer ◽  
Monika Harnisz ◽  
Hyo Jung Lee ◽  
Andreas Reim ◽  
Oliver Grunert ◽  
...  

ABSTRACT Ombrotrophic peatlands are a recognized global carbon reservoir. Without restoration and peat regrowth, harvested peatlands are dramatically altered, impairing their carbon sink function, with consequences for methane turnover. Previous studies determined the impact of commercial mining on the physicochemical properties of peat and the effects on methane turnover. However, the response of the underlying microbial communities catalyzing methane production and oxidation have so far received little attention. We hypothesize that with the return of Sphagnum spp. postharvest, methane turnover potential and the corresponding microbial communities will converge in a natural and restored peatland. To address our hypothesis, we determined the potential methane production and oxidation rates in natural (as a reference), actively mined, abandoned, and restored peatlands over two consecutive years. In all sites, the methanogenic and methanotrophic population sizes were enumerated using quantitative PCR (qPCR) assays targeting the mcrA and pmoA genes, respectively. Shifts in the community composition were determined using Illumina MiSeq sequencing of the mcrA gene and a pmoA -based terminal restriction fragment length polymorphism (t-RFLP) analysis, complemented by cloning and sequence analysis of the mmoX gene. Peat mining adversely affected methane turnover potential, but the rates recovered in the restored site. The recovery in potential activity was reflected in the methanogenic and methanotrophic abundances. However, the microbial community composition was altered, being more pronounced for the methanotrophs. Overall, we observed a lag between the recovery of the methanogenic/methanotrophic activity and the return of the corresponding microbial communities, suggesting that a longer duration (>15 years) is needed to reverse mining-induced effects on the methane-cycling microbial communities. IMPORTANCE Ombrotrophic peatlands are a crucial carbon sink, but this environment is also a source of methane, an important greenhouse gas. Methane emission in peatlands is regulated by methane production and oxidation catalyzed by methanogens and methanotrophs, respectively. Methane-cycling microbial communities have been documented in natural peatlands. However, less is known of their response to peat mining and of the recovery of the community after restoration. Mining exerts an adverse impact on potential methane production and oxidation rates and on methanogenic and methanotrophic population abundances. Peat mining also induced a shift in the methane-cycling microbial community composition. Nevertheless, with the return of Sphagnum spp. in the restored site after 15 years, methanogenic and methanotrophic activity and population abundance recovered well. The recovery, however, was not fully reflected in the community composition, suggesting that >15 years are needed to reverse mining-induced effects.


Sign in / Sign up

Export Citation Format

Share Document