Isolation of Deinococcus Species from Commercial Oyster Extract

1999 ◽  
Vol 65 (2) ◽  
pp. 846-848 ◽  
Author(s):  
W. F. Chan ◽  
D. K. O’Toole

ABSTRACT Deinococci with radiation resistance greater than that ofDeinococcus radiophilus (ATCC 27603) were isolated from three commercial oyster extracts stored at 4, 20, and 30°C. During storage the number of other bacteria declined and deinococci became the predominant group in the microflora, particularly at 20°C, although at 30°C the number of deinococci as well rapidly declined. The results suggest that the natural habitat of deinococci is an aerobic environment containing a slightly elevated saline content, soluble protein, and low sugar levels.

Author(s):  
Burton B. Silver ◽  
Ronald S. Nelson

Some investigators feel that insulin does not enter cells but exerts its influence in some manner on the cell surface. Ferritin labeling of insulin and insulin antibody was used to determine if binding sites of insulin to specific target organs could be seen with electron microscopy.Alloxanized rats were considered diabetic if blood sugar levels were in excess of 300 mg %. Test reagents included ferritin, ferritin labeled insulin, and ferritin labeled insulin antibody. Target organs examined were were diaphragm, kidney, gastrocnemius, fat pad, liver and anterior pituitary. Reagents were administered through the left common carotid. Survival time was at least one hour in test animals. Tissue incubation studies were also done in normal as well as diabetic rats. Specimens were fixed in gluteraldehyde and osmium followed by staining with lead and uranium salts. Some tissues were not stained.


Author(s):  
L. P. Hardie ◽  
D. L. Balkwill ◽  
S. E. Stevens

Agmenellum quadruplicatum is a unicellular, non-nitrogen-fixing, marine cyanobacterium (blue-green alga). The ultrastructure of this organism, when grown in the laboratory with all necessary nutrients, has been characterized thoroughly. In contrast, little is known of its ultrastructure in the specific nutrient-limiting conditions typical of its natural habitat. Iron is one of the nutrients likely to limit this organism in such natural environments. It is also of great importance metabolically, being required for both photosynthesis and assimilation of nitrate. The purpose of this study was to assess the effects (if any) of iron limitation on the ultrastructure of A. quadruplicatum. It was part of a broader endeavor to elucidate the ultrastructure of cyanobacteria in natural systemsActively growing cells were placed in a growth medium containing 1% of its usual iron. The cultures were then sampled periodically for 10 days and prepared for thin sectioning TEM to assess the effects of iron limitation.


1985 ◽  
Vol 54 (02) ◽  
pp. 413-414 ◽  
Author(s):  
Margarethe Geiger ◽  
Bernd R Binder

SummaryWe have demonstrated previously that fibrin enhanced plasmin formation by the vascular plasminogen activator was significantly impaired, when components isolated from the plasma of three uncontrolled diabetic patients (type I) were used to study plasminogen activation in vitro. In the present study it can be demonstrated that functional properties of the vascular plasminogen activators as well as of the plasminogens from the same three diabetic patients are significantly improved after normalization of blood sugar levels and improvement of HbAlc values. Most pronounced the Km of diabetic vascular plasminogen activator in the presence of fibrin returned to normal values, and for diabetic plasminogen the prolonged lag period until maximal plasmin formation occurred was shortened to almost control values. From these data we conclude that the observed abnormalities of in vitro fibrinolysis are not primarily associated with the diabetic disease, but might be secondary to metabolic disorders caused by diabetes.


Author(s):  
I.G.C. Kerr ◽  
J.M. Williams ◽  
W.D. Ross ◽  
J.M. Pollard

The European rabbit (Oryctolagus cuniculus) introduced into New Zealand in the 183Os, has consistently flourished in Central Otago, the upper Waitaki, and inland Marlborough, all areas of mediterranean climate. It has proved difficult to manage in these habitats. The 'rabbit problem' is largely confined to 105,000 ha of low producing land mostly in semi arid areas of Central Otago. No field scale modifications of the natural habitat have been successful in limiting rabbit numbers. The costs of control exceed the revenue from the land and continued public funding for control operations appears necessary. A system for classifying land according to the degree of rabbit proneness is described. Soil survey and land classification information for Central Otago is related to the distribution and density of rabbits. This intormation can be used as a basis for defining rabbit carrying capacity and consequent land use constraints and management needs. It is concluded that the natural rabbit carrying capacity of land can be defined by reference to soil survey information and cultural modification to the natural vegetation. Classification of land according to rabbit proneness is proposed as a means of identifying the need for, and allocation of, public funding tor rabbit management. Keywords: Rabbit habitat, rabbit proneness, use of rabbit prone land.


1972 ◽  
Vol 33 (3) ◽  
pp. 722-733 ◽  
Author(s):  
John W. Dundee ◽  
Martin Isaac ◽  
Elizabeth A. Davis ◽  
Brian Sheridan

2015 ◽  
Vol 0 (1) ◽  
Author(s):  
Yuliya A. Kazimirenko ◽  
Valentina V. Shlapatskaya
Keyword(s):  

2012 ◽  
Vol 22 (3) ◽  
pp. 219-232 ◽  
Author(s):  
Luca Belmonte ◽  
Eugenia Pechkova ◽  
Shailesh Tripathi ◽  
Dora Scudieri ◽  
Claudio Nicolini

Sign in / Sign up

Export Citation Format

Share Document