scholarly journals Medium-Chain Fatty Acids Affect Citrinin Production in the Filamentous Fungus Monascus ruber

2000 ◽  
Vol 66 (3) ◽  
pp. 1120-1125 ◽  
Author(s):  
Hassan Hajjaj ◽  
Alain Klaébé ◽  
Gérard Goma ◽  
Philippe J. Blanc ◽  
Estelle Barbier ◽  
...  

ABSTRACT During submerged culture in the presence of glucose and glutamate, the filamentous fungus Monascus ruber produces water-soluble red pigments together with citrinin, a mycotoxin with nephrotoxic and hepatoxic effects on animals. Analysis of the13C-pigment molecules from mycelia cultivated with [1-13C]-, [2-13C]-, or [1,2-13C]acetate by 13C nuclear magnetic resonance indicated that the biosynthesis of the red pigments used both the polyketide pathway, to generate the chromophore structure, and the fatty acid synthesis pathway, to produce a medium-chain fatty acid (octanoic acid) which was then bound to the chromophore by atrans-esterification reaction. Hence, to enhance pigment production, we tried to short-circuit the de novo synthesis of medium-chain fatty acids by adding them to the culture broth. Of fatty acids with carbon chains ranging from 6 to 18 carbon atoms, only octanoic acid showed a 30 to 50% stimulation of red pigment production, by a mechanism which, in contrast to expectation, did not involve its direct trans-esterification on the chromophore backbone. However, the medium- and long-chain fatty acids tested were readily assimilated by the fungus, and in the case of fatty acids ranging from 8 to 12 carbon atoms, 30 to 40% of their initial amount transiently accumulated in the growth medium in the form of the corresponding methylketone 1 carbon unit shorter. Very interestingly, these fatty acids or their corresponding methylketones caused a strong reduction in, or even a complete inhibition of, citrinin production byM. ruber when they were added to the medium. Several data indicated that this effect could be due to the degradation of the newly synthesized citrinin (or an intermediate in the citrinin pathway) by hydrogen peroxide resulting from peroxisome proliferation induced by medium-chain fatty acids or methylketones.

2010 ◽  
Vol 39 (10) ◽  
pp. 2297-2303 ◽  
Author(s):  
Daniele Cristina da Silva-Kazama ◽  
Geraldo Tadeu dos Santos ◽  
Paula Toshimi Matumoto Pintro ◽  
Jesuí Vergílio Visentainer ◽  
Ricardo Kazama ◽  
...  

Eight Holstein cows with body weight 570 ± 43 kg and 60 ± 20 lactation days were distributed in a double Latin square design with four 21-day periods to determine the effects of feeding ground or whole flaxseed with or without monensin supplementation (0.02% on a dry matter basis) on fatty acid profile of butter stored for 15 and 45 days. Ground flaxseed supply, in comparison to whole flaxseed, reduced relative percentages of 16:0, cis7-16:1, 17:0, and cis10-17:1 but it increased those of cis9,trans11-18:2, cis3-18:3, and omega 3 fatty acids in butter fat, reducing relative percentage of medium-chain fatty acids and increasing the content of polyunsaturated fatty acids. Supplementation with monensin increased relative percentages of cis9,trans11-18:2 and tended to increase relative percentage of 17:0 and decrease that of saturated fatty acids in butter. Butter from cows fed diet with monensin presented lower relative percentages of cis 6-20:4. Relative percentages of cis 9-16:1, cis10-17:1, 18:0, trans11-18:1, cis9-18:1, cis3-18:3, cis6-20:4 in butter stored for 15 days were higher than those stored for 45 days and the relative percentages of cis3-20:5 tended to decrease with the increase of storage period. As a result, relative percentages of saturated fatty acids and medium-chain fatty acids increased with storage time, while those of monounsaturated and long-chain fatty acids decreased. Butter enriched with polyunsaturated fatty acids may have a shorter shelf life due to the negative effect of storage on fatty acid profile which may cause oxidation and rancidity.


2021 ◽  
Author(s):  
Xiao-Qing Hou ◽  
Dan-Dan Zhang ◽  
Daniel Powell ◽  
Hong-Lei Wang ◽  
Martin N. Andersson ◽  
...  

In insects, airborne chemical signals are mainly detected by two receptor families, odorant receptors (ORs) and ionotropic receptors (IRs). Functions of ORs have been intensively investigated in Diptera and Lepidoptera, while the functions and evolution of the more ancient IR family remain largely unexplored beyond Diptera. Here, we identified a repertoire of 26 IRs from transcriptomes of female and male antennae, and ovipositors in the moth Agrotis segetum. We observed that a large clade formed by IR75p and IR75q expansions is closely related to the acid-sensing IRs identified in Diptera. We functionally assayed each of the five AsegIRs from this clade using Xenopus oocytes and found that two receptors responded to the tested ligands. AsegIR75p.1 responded to several compounds but hexanoic acid was revealed to be the primary ligand, and AsegIR75q.2 responded primarily to octanoic acid, and less so to nonanoic acid. It has been reported that the C6-C10 medium-chain fatty acids repel various insects including many drosophilids and mosquitos. Our GC-EAD recordings showed that C6-C10 medium-chain fatty acids elicited antennal responses of both sexes of A. segetum, while only octanoic acid had repellent effect to the moths in a behavioural assay. In addition, using fluorescence in situ hybridization, we demonstrated that AsegIR75q.2 and its co-receptor AsegIR8a are not located in coeloconic sensilla as found in Drosophila, but in basiconic or trichoid sensilla. These functional data in combination with our phylogenetic analysis suggest that subfunctionalization of the acid-sensing IRs after gene duplication plays an important role in the evolution of ligand specificities of the acid-sensing IRs in Lepidoptera.


2012 ◽  
Vol 97 (1) ◽  
pp. 208-216 ◽  
Author(s):  
Joris Hoeks ◽  
Marco Mensink ◽  
Matthijs K. C. Hesselink ◽  
Kim Ekroos ◽  
Patrick Schrauwen

Context: Animal studies revealed that medium-chain fatty acids (MCFA), due to their metabolic characteristics, are not stored in skeletal muscle and may therefore not give rise to potentially hazardous lipid species impeding insulin signaling. Objective: We here hypothesized that infusion of medium-chain triacylglycerols (MCT) in healthy lean subjects does not lead to ectopic fat accumulation and hence does not result in lipid-induced insulin resistance. Design and Methods: Nine healthy lean male subjects underwent a 6-h hyperinsulinemic-euglycemic clamp with simultaneous infusion of 1) a 100% long-chain triacylglycerols (LCT) emulsion, 2) a 50/50% MCT/LCT emulsion, or 3) glycerol in a randomized crossover design. Muscle biopsies were taken before and after each clamp. Results: MCT/LCT infusion raised plasma free fatty acid levels to a similar level compared with LCT infusion alone. Despite elevated free fatty acid levels, intramyocellular triacylglycerol (IMTG) levels were not affected by the MCT/LCT emulsion, whereas LCT infusion resulted in an approximately 1.6-fold increase in IMTG. These differences in muscle fat accumulation did not result in significant differences in lipid-induced insulin resistance between LCT (−28%, P = 0.003) and MCT/LCT (−20%, P < 0.001). Total skeletal muscle ceramide content as well as lactosyl- and glucosylceramide levels were not affected by any of the interventions. In addition, the distribution pattern of all ceramide species remained unaltered. Conclusions: Although we confirm that MCFA do not lead to ceramide and IMTG accumulation in skeletal muscle tissue in humans, they do induce insulin resistance. These results indicate that, in humans, MCFA may not be beneficial in preventing peripheral insulin resistance.


2017 ◽  
Vol 6 (10) ◽  
pp. 1870-1879 ◽  
Author(s):  
Coraline Rigouin ◽  
Marc Gueroult ◽  
Christian Croux ◽  
Gwendoline Dubois ◽  
Vinciane Borsenberger ◽  
...  

1982 ◽  
Vol 202 (1) ◽  
pp. 139-143 ◽  
Author(s):  
J Knudsen ◽  
I Grunnet

1. Ruminant mammary-gland fatty acid synthetases can, in contrast with non-ruminant mammary enzymes, synthesize medium-chain fatty acids. 2. Medium-chain fatty acids are only synthesized in the presence of a fatty acid-removing system such as albumin, beta-lactoglobulin or methylated cyclodextrin. 3. The short- and medium-chain fatty acids synthesized were released as acyl-CoA esters from the fatty acid synthetase.


2021 ◽  
Author(s):  
◽  
Leonie Baumann

Octanoic acid (C8 FA) is a medium-chain fatty acid which, in nature, mainly occurs in palm kernel oil and coconuts. It is used in various products including cleaning agents, cosmetics, pesticides and herbicides as well as in foods for preservation or flavoring. Furthermore, it is investigated for medical treatments, for instance, of high cholesterol levels. The cultivation of palm oil plants has surged in the last years to satisfy an increasing market demand. However, concerns about extensive monocultures, which often come along with deforestation of rainforest, have driven the search for more environmentally friendly production methods. A biotechnological production with microbial organisms presents an attractive, more sustainable alternative. Traditionally, the yeast Saccharomyces cerevisiae has been utilized by mankind in bread, wine, and beer making. Based on comprehensive knowledge about its metabolism and genetics, it can nowadays be metabolically engineered to produce a plethora of compounds of industrial interest. To produce octanoic acid, the cytosolic fatty acid synthase (FAS) of S. cerevisiae was utilized and engineered. Naturally, the yeast produces mostly long-chain fatty acids with chain lengths of C16 and C18, and only trace amounts of medium-chain fatty acids, i.e. C8-C14 fatty acids. To generate an S. cerevisiae strain that produces primarily octanoic acid, a mutated version of the FAS was generated (Gajewski et al., 2017) and the resulting S. cerevisiae FASR1834K strain was utilized in this work as a starting strain. The goal of this thesis was to develop and implement strategies to improve the production level of this strain. The current mode of quantification of octanoic acid includes labor-intensive, low-throughput sample preparation and measurement – a main obstacle in generating and screening for improved strain variants. To this end, a main objective of this thesis was the development of a biosensor. The biosensor was based on the pPDR12 promotor, which is regulated by the transcription factor War1. Coupling pPDR12 to GFP as the reporter gene on a multicopy plasmid allowed in vivo detection via fluorescence intensity. The developed biosensor enabled rapid and facile quantification of the short- and medium-chain fatty acids C6, C7 and C8 fatty acids (Baumann et al., 2018). This is the first biosensor that can quantify externally supplied octanoic acid as well as octanoic acid present in the culture supernatant of producer strains with a high linear and dynamic range. Its reliability was validated by correlation of the biosensor signal to the octanoic acid concentrations extracted from culture supernatants as determined by gas chromatography. The biosensor’s ability to detect octanoic acid in a linear range of 0.01-0.75 mM (≈1-110 mg/L), which is within the production range of the starting strain, and a response of up to 10-fold increase in fluorescence after activation was demonstrated. A high-throughput FACS (fluorescence-activated cell sorting) screening of an octanoic acid producer strain library was performed with the biosensor to detect improved strain variants (Baumann et al., 2020a). For this purpose, the biosensor was genomically integrated into an octanoic acid producer strain, resulting in drastically reduced single cell noise. The additional knockout of FAA2 successfully prevented medium-chain fatty acid degradation. A high-throughput screening protocol was designed to include iterative enrichment rounds which decreased false positives. The functionality of the biosensor on single cell level was validated by adding octanoic acid in the range of 0-80 mg/L and subsequent flow cytometric analysis. The biosensor-assisted FACS screening of a plasmid overexpression library of the yeast genome led to the detection of two genetic targets, FSH2 and KCS1, that in combined overexpression enhanced octanoic acid titers by 55 % compared to the parental strain. This was the first report of an effect of FSH2 and KCS1 on fatty acid titers. The presented method can also be utilized to screen other genetic libraries and is a means to facilitate future engineering efforts. In growth tests, the previously reported toxicity of octanoic acid on S. cerevisiae was confirmed. Different strategies were harnessed to create more robust strains. An adaptive laboratory evolution (ALE) experiment was conducted and several rational targets including transporter- (PDR12, TPO1) and transcription factor-encoding genes (PDR1, PDR3, WAR1) as well as the mutated acetyl-CoA carboxylase encoding gene ACC1S1157A were overexpressed or knocked out in producer or non-producer strains, respectively. Despite contrary previous reports for other strain backgrounds, an enhanced robustness was not observable. Suspecting that the utilized laboratory strains have a natively low tolerance level, four industrial S. cerevisiae strains were evaluated in growth assays with octanoic acid and inherently more robust strains were detected, which are suitable future production hosts. ...


1984 ◽  
Vol 220 (2) ◽  
pp. 513-519 ◽  
Author(s):  
H O Hansen ◽  
I Grunnet ◽  
J Knudsen

Goat mammary-gland microsomal fraction by itself induces synthesis of medium-chain-length fatty acids by goat mammary fatty acid synthetase and incorporates short- and medium-chain fatty acids into triacylglycerol. Addition of ATP in the absence or presence of Mg2+ totally inhibits triacylglycerol synthesis from short- and medium-chain fatty acids, and severely inhibits synthesis de novo of medium-chain fatty acids. The inhibition by ATP of fatty acid synthesis and triacylglycerol synthesis de novo can be relieved by glycerol 3-phosphate. The effect of ATP could not be mimicked by the non-hydrolysable ATP analogue, adenosine 5′-[beta, gamma-methylene]triphosphate and could not be shown to be caused by inhibition of the diacylglycerol acyltransferase by a phosphorylation reaction. Possible explanations for the mechanism of the inhibition by ATP are discussed, and a hypothetical model for its action is outlined.


Sign in / Sign up

Export Citation Format

Share Document