scholarly journals Concentration and Detection of Cryptosporidium Oocysts in Surface Water Samples by Method 1622 Using Ultrafiltration and Capsule Filtration

2001 ◽  
Vol 67 (3) ◽  
pp. 1123-1127 ◽  
Author(s):  
Otto D. Simmons ◽  
Mark D. Sobsey ◽  
Christopher D. Heaney ◽  
Frank W. Schaefer ◽  
Donna S. Francy

ABSTRACT The protozoan parasite Cryptosporidium parvumis known to occur widely in both source and drinking water and has caused waterborne outbreaks of gastroenteritis. To improve monitoring, the U.S. Environmental Protection Agency developed method 1622 for isolation and detection of Cryptosporidium oocysts in water. Method 1622 is performance based and involves filtration, concentration, immunomagnetic separation, fluorescent-antibody staining and 4′,6-diamidino-2-phenylindole (DAPI) counterstaining, and microscopic evaluation. The capsule filter system currently recommended for method 1622 was compared to a hollow-fiber ultrafilter system for primary concentration of C. parvum oocysts in seeded reagent water and untreated surface waters. Samples were otherwise processed according to method 1622. Rates of C. parvumoocyst recovery from seeded 10-liter volumes of reagent water in precision and recovery experiments with filter pairs were 42% (standard deviation [SD], 24%) and 46% (SD, 18%) for hollow-fiber ultrafilters and capsule filters, respectively. Mean oocyst recovery rates in experiments testing both filters on seeded surface water samples were 42% (SD, 27%) and 15% (SD, 12%) for hollow-fiber ultrafilters and capsule filters, respectively. Although C. parvum oocysts were recovered from surface waters by using the approved filter of method 1622, the recovery rates were significantly lower and more variable than those from reagent grade water. In contrast, the disposable hollow-fiber ultrafilter system was compatible with subsequent method 1622 processing steps, and it recovered C. parvum oocysts from seeded surface waters with significantly greater efficiency and reliability than the filter suggested for use in the version of method 1622 tested.

2021 ◽  
Author(s):  
Randolph Singh ◽  
Adelene Lai ◽  
Jessy Krier ◽  
Todor Kondić ◽  
Philippe Diderich ◽  
...  

<p>This pre-print describes the analysis of pharmaceuticals and their transformation products in surface water samples collected in Luxembourg from 2019 to 2020. Details of the experimental and computational tools and workflows used are fully described in the manuscript. Links to the suspect lists, codes used, and data files are also provided.</p>


Author(s):  
Dimitri Tomovski ◽  
Trajče Stafilov ◽  
Robert Šajn ◽  
Katerina Bačeva Andonovska

An investigation of the distribution of 23 chemical elements (Ag, Al, As, B, Ba, Ca, Cd, Co, Cr, Cu, Fe, K, Li, Mg, Mn, Mo, Na, Ni, P, Pb, Sr, V and Zn) in surface water samples from the entire basin of the Crna River, Republic of Macedonia, was carried out. In total 31 water samples were collected, from which 8 samples from the Crna River and 4 samples from four main tributaries of Crna River in the Pelagonia Valley (Blato, Prilepska Reka, Dragor and Jelaška Reka). Also, surface water samples were collected from 3 locations in the Tikveš Lake, 8 locations from the Majdanska River and river of Blašnica before its inflow into the Tikveš Lake and from 7 locations of the lower course of the Crna River after the dam of Tikveš Lake until its inflow into the river of Vardar. Determination of the concen-tration of the investigated elements was performed by using atomic emission spectrometry with inductively coupled plasma (ICP-AES). All data obtained for the analyzed samples were statistically processed using software Stat Soft 11.0 where the descriptive statistical analysis of the value for the concentration of the elements was performed. The maps of spatial distribution of the concentration for each element and a histograms for the representation of elements with mean values of the concentrations by regions, were also prepared. The obtained results show that the concentration of investigated element are mainly followed the lithology of the region. However, higher concentrations of arsenic were found in the water samples from the river of Blašnica which is a result of anthropogenic influence from the abounded Allchar mine on the Kožuf Mountain. Also, the increased concentrations of nickel were found in the samples from the lower couse of the Crna River after the dam of Tikveš Lake due to the anthropogenic influence from the ferronickel smelter plant Feni Industry, which can influence the quality parameters of surface waters.


2015 ◽  
Vol 6 (1) ◽  
pp. 131-140
Author(s):  
MF Karim ◽  
MW Zaman ◽  
R Sultana ◽  
MU Nizam ◽  
MR Kamruzzaman

A study was carried out with 25 pond water samples of Bhola Sadar Upazila to assess the quality of surface water for irrigation, aquaculture, drinking and livestock consumption. Chemical analyses of different parameters were done to assess the quality of water. All of the water samples showed slightly acidic in nature. Sixteen surface water samples were not suitable for drinking and aquaculture in respect of pH (pH <6.5). Electrical conductivity (EC) categorized the waters as “low salinity” (C1) to “medium salinity” (C2) class for irrigation. With respect to total dissolved solids surface waters were within “highest desirable limit” for drinking and irrigation and suitable for livestock consumption and aquaculture. Calcium and Magnesium content rated the samples as “maximum permissible” and “highest desirable” limit for drinking. All the samples were suitable for drinking in case of Na and K, 21 samples were not suitable for aquaculture due to higher (>5.0 mg L-1) K content. Six samples were unsuitable for livestock due to higher (Cl >30mgL- 1) Cl values. SSP rated 9 samples as “good”, 1 as “excellent”, 6 as “doubtful” and 9 as “permissible” for irrigation. With respect to RSC 21 samples were “suitable”, 3 were “marginal” and 1 was “unsuitable” for irrigation. Hardness classified 14 samples within “moderately hard”, 10 within “soft” and only one as “hard” limit for irrigation and 1 sample (No. 16) was unsuitable for livestock consumption. P, B, Cu and As concentration categorized all the samples suitable for irrigation, aquaculture, drinking and livestock consumption.DOI: http://dx.doi.org/10.3329/jesnr.v6i1.22053 J. Environ. Sci. & Natural Resources, 6(1): 131-140 2013


Weed Science ◽  
2006 ◽  
Vol 54 (4) ◽  
pp. 807-813 ◽  
Author(s):  
David R. Shaw ◽  
Stephen M. Schraer ◽  
Joby Prince ◽  
Michele Boyette

A two-year surface water reconnaissance of the Bogue Phalia and its tributaries was conducted in 1997 and 1998. Cyanazine and metolachlor in surface water samples were quantified using enzyme-linked immunosorbent assays (ELISA). Cyanazine and metolachlor were detected in 101 and 132 of 160 samples, respectively. Cyanazine concentrations ranged from 0.1 to 2.2 g L−1and exceeded the U.S. Environmental Protection Agency (EPA) lifetime health advisory level (HAL) of 1 g L−1in eight samples. However, concentrations never exceeded the HAL for shorter exposure times. Metolachlor concentrations never reached the lifetime HAL of 100 g L−1. Metolachlor concentrations ranged from 0.1 to 20.6 g L−1. Metolachlor was detected more frequently and found to be more persistent throughout the growing season than was cyanazine. Higher cyanazine and metolachlor concentrations were detected at sampling dates that coincided with herbicide applications. One of the Bogue Phalia's tributaries, Clear Creek, was found to be a point-source of cyanazine for the watershed.


2002 ◽  
Vol 48 (6) ◽  
pp. 542-549 ◽  
Author(s):  
Ryan C Kuhn ◽  
Kevin H Oshima

An optimized hollow-fiber ultrafiltration system (50 000 MWCO) was developed to concentrate Cryptosporidium oocysts from 10-L samples of environmental water. Seeded experiments were conducted using a number of surface-water samples from the southwestern U.S.A. and source water from four water districts with histories of poor oocyst recovery. Ultrafiltration produced a mean recovery of 47.9% from 19 water samples (55.3% from 39 individual tests). We also compared oocyst recoveries using the hollow-fiber ultrafiltration system with those using the Envirochek filter. In limited comparison tests, the hollow-fiber ultrafiltration system produced recoveries similar to those of the Envirochek filter (hollow fiber, 74.1% (SD = 2.8); Envirochek, 71.9% (SD = 5.2)) in low-turbidity (3.9 NTU) samples and performed better than the Envirochek filter in high-turbidity (159.0 NTU) samples (hollow fiber, 27.5%; Envirochek, 0.4%). These results indicate that hollow-fiber ultrafiltration can efficiently recover oocysts from a wide variety of surface waters and may be a cost-effective alternative for concentrating Cryptosporidium from water, given the reusable nature of the filter.Key words: Cryptosporidium, ultrafiltration, oocyst.


2017 ◽  
Vol 68 (8) ◽  
pp. 1716-1722 ◽  
Author(s):  
Vasile Ion Iancu ◽  
Toma Galaon ◽  
Marcela Niculescu ◽  
Carol Blaziu Lehr

Increasing and widespread use of neonicotinoid insecticides in all world, together with their highly toxicity to invertebrates and environmental persistence mean that surface waters need to be monitored for these compounds. In the 2015, neonicotinoid insecticides have been incorporated in the watch list of substances for a European Union monitoring program (495/2015/ EU). A new method using automated solid phase extraction (SPE) with polymeric cartridges (OASIS HLB) followed by LC-MS/MS provided good separation of the most common neonicotindoid compounds. The method was developed for the determination of four neonicotinoid insecticides (nitenpyram, thiamethoxam, clothianidin, acetamiprid) in surface water with low limit of quantification (0.3-0.9 ng/L, nanograms per liter). Recoveries in surface water samples fortified at 200 ng/L for each compound ranged from 71.4 to 109.9 %; relative standard deviation ranged from 4 to 9%. The method was applied to water samples from four streams in Romania, Danube River and its tributaries (Arges River, Jiu River, and Olt River). The surface water samples were found to be contaminated clothianidin (1.08-6.4 ng/L) and by thiamethoxam (1.1-3.8ng/L). The highest concentrations were recorded in Danube River in Oltenita point (6.4ng/L) and in Gura-Vaii point (5.5ng/L). The concentration of acetamiprid and nitenpyram were situated below limit of quantification in all samples.


2003 ◽  
Vol 69 (4) ◽  
pp. 1898-1903 ◽  
Author(s):  
Yao Yu Feng ◽  
Say Leong Ong ◽  
Jiang Yong Hu ◽  
Lian Fa Song ◽  
Xiao Lan Tan ◽  
...  

ABSTRACT Cryptosporidium parvum can be found in both source and drinking water and has been reported to cause serious waterborne outbreaks which threaten public health safety. The U.S. Environmental Protection Agency has developed method 1622 for detection of Cryptosporidium oocysts present in water. Method 1622 involves four key processing steps: filtration, immunomagnetic separation (IMS), fluorescent-antibody (FA) staining, and microscopic evaluation. The individual performance of each of these four steps was evaluated in this study. We found that the levels of recovery of C. parvum oocysts at the IMS-FA and FA staining stages were high, averaging more than 95%. In contrast, the level of recovery declined significantly, to 14.4%, when the filtration step was incorporated with tap water as a spiking medium. This observation suggested that a significant fraction of C. parvum oocysts was lost during the filtration step. When C. parvum oocysts were spiked into reclaimed water, tap water, microfiltration filtrate, and reservoir water, the highest mean level of recovery of (85.0% ± 5.2% [mean ± standard deviation]) was obtained for the relatively turbid reservoir water. Further studies indicated that it was the suspended particles present in the reservoir water that contributed to the enhanced C. parvum oocyst recovery. The levels of C. parvum oocyst recovery from spiked reservoir water with different turbidities indicated that particle size and concentration could affect oocyst recovery. Similar observations were also made when silica particles of different sizes and masses were added to seeded tap water. The optimal particle size was determined to be in the range from 5 to 40 μm, and the corresponding optimal concentration of suspended particles was 1.42 g for 10 liters of tap water.


2014 ◽  
Vol 80 (8) ◽  
pp. 2328-2336 ◽  
Author(s):  
Natalie Prystajecky ◽  
Peter M. Huck ◽  
Hans Schreier ◽  
Judith L. Isaac-Renton

ABSTRACTKnowledge of host specificity, combined with genomic sequencing ofGiardiaandCryptosporidiumspp., has demonstrated a microbial source tracking (MST) utility for these common waterborne microbes. To explore the source attribution potential of these pathogens, water samples were collected in a mixed rural-urban watershed in the Township of Langley, in southwestern British Columbia (BC), Canada, over a 2-year period.Cryptosporidiumwas detected in 63% of surface water samples at concentrations ranging from no positive detection (NPD) to 20,600 oocysts per 100 liters.Giardiawas detected in 86% of surface water samples at concentrations ranging from NPD to 3,800 cysts per 100 liters of water. Sequencing at the 18S rRNA locus revealed that 50% ofCryptosporidiumsamples and 98% ofGiardiasamples contained species/genotypes (Cryptosporidium) or assemblages (Giardia) that are capable of infecting humans, based on current knowledge of host specificity and taxonomy.Cryptosporidiumgenotyping data were more promising for source tracking potential, due to the greater number of host-adapted (i.e., narrow-host-range) species/genotypes compared toGiardia, since 98% ofGiardiaisolates were zoonotic and the potential host could not be predicted. This report highlights the benefits of parasite genomic sequencing to complement Method 1623 (U.S. Environmental Protection Agency) and shows thatCryptosporidiumsubtyping for MST purposes is superior to the use ofGiardiasubtyping, based on better detection limits forCryptosporidium-positive samples than forGiardia-positive samples and on greater host specificity amongCryptosporidiumspecies. These additional tools could be used for risk assessment in public health and watershed management decisions.


2019 ◽  
Vol 5 (7) ◽  
pp. 1599-1608 ◽  
Author(s):  
Ghulam Shabir Solangi ◽  
Altaf Ali Siyal ◽  
Pirah Siyal

The present study was conducted to analyze the suitability of groundwater and surface water of the Indus Delta, Pakistan for domestic and irrigation purposes based on the concentrations of arsenic (As), total dissolved solids (TDS), and chloride (Cl). Around 180 georeferenced groundwater and 50 surface water samples randomly collected were analyzed and mapped spatially using ArcGIS 10.5 software. The results were compared with their respective WHO and FAO guidelines. The analysis revealed that as in groundwater and surface water samples ranged up to 200, and 25 µg/L respectively. Similarly, the TDS in the groundwater and surface water ranged from 203 to 17, 664 mg/L and 378 to 38,272 mg/L respectively. The Cl in groundwater and surface water varied between 131 and 6,275 mg/L and 440 to 17,406 mg/L respectively. Overall, about 18%, 87% and 94% of the groundwater, and 10%, 92% and 56% of the surface waters possessed higher concentrations of As, TDS, and Cl, respectively. The higher levels of Cl in the samples are attributed to subsurface seawater intrusion in the delta. Analysis results and GIS mapping of water quality parameters revealed that in most of the delta, the quality of water was not suitable for drinking and agricultural purposes, thus should be properly treated before its use.


Sign in / Sign up

Export Citation Format

Share Document