scholarly journals Fatty Acid Production from Amino Acids and α-Keto Acids by Brevibacterium linens BL2

2004 ◽  
Vol 70 (11) ◽  
pp. 6385-6393 ◽  
Author(s):  
Balasubramanian Ganesan ◽  
Kimberly Seefeldt ◽  
Bart C. Weimer

ABSTRACT Low concentrations of branched-chain fatty acids, such as isobutyric and isovaleric acids, develop during the ripening of hard cheeses and contribute to the beneficial flavor profile. Catabolism of amino acids, such as branched-chain amino acids, by bacteria via aminotransferase reactions and α-keto acids is one mechanism to generate these flavorful compounds; however, metabolism of α-keto acids to flavor-associated compounds is controversial. The objective of this study was to determine the ability of Brevibacterium linens BL2 to produce fatty acids from amino acids and α-keto acids and determine the occurrence of the likely genes in the draft genome sequence. BL2 catabolized amino acids to fatty acids only under carbohydrate starvation conditions. The primary fatty acid end products from leucine were isovaleric acid, acetic acid, and propionic acid. In contrast, logarithmic-phase cells of BL2 produced fatty acids from α-keto acids only. BL2 also converted α-keto acids to branched-chain fatty acids after carbohydrate starvation was achieved. At least 100 genes are potentially involved in five different metabolic pathways. The genome of B. linens ATCC 9174 contained these genes for production and degradation of fatty acids. These data indicate that brevibacteria have the ability to produce fatty acids from amino and α-keto acids and that carbon metabolism is important in regulating this event.

1982 ◽  
Vol 152 (1) ◽  
pp. 246-254
Author(s):  
Caroline S. Harwood ◽  
Ercole Canale-Parola

Spirochete MA-2, which is anaerobic, ferments glucose, forming acetate as a major product. The spirochete also ferments (but does not utilize as growth substrates) small amounts of l -leucine, l -isoleucine, and l -valine, forming the branched-chain fatty acids isovalerate, 2-methylbutyrate, and isobutyrate, respectively, as end products. Energy generated through the fermentation of these amino acids is utilized to prolong cell survival under conditions of growth substrate starvation. A branched-chain fatty acid kinase and two acetate kinase isozymes were resolved from spirochete MA-2 cell extracts. Kinase activity was followed by measuring the formation of acyl phosphate from fatty acid and ATP. The branched-chain fatty acid kinase was active with isobutyrate, 2-methylbutyrate, isovalerate, butyrate, valerate, or propionate as a substrate but not with acetate as a substrate. The acetate kinase isozymes were active with acetate and propionate as substrates but not with longer-chain fatty acids as substrates. The acetate kinase isozymes and the branched-chain fatty acid kinase differed in nucleoside triphosphate and cation specificities. Each acetate kinase isozyme had an apparent molecular weight of approximately 125,000, whereas the branched-chain fatty acid kinase had a molecular weight of approximately 76,000. These results show that spirochete MA-2 synthesizes a branched-chain fatty acid kinase specific for leucine, isoleucine, and valine fermentation. It is likely that a phosphate branched-chain amino acids is also synthesized by spirochete MA-2. Thus, in spirochete MA-2, physiological mechanisms have evolved which serve specifically to generate maintenance energy from branched-chain amino acids.


Foods ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 471
Author(s):  
Guillermo Ripoll ◽  
María Jesús Alcalde ◽  
Anastasio Argüello ◽  
María de Guía Córdoba ◽  
Begoña Panea

Goat meat is considered healthy because it has fewer calories and fat than meat from other traditional meat species. It is also rich in branched chain fatty acids that have health advantages when consumed. We studied the effects of maternal milk and milk replacers fed to suckling kids of four breeds on the straight and branched fatty acid compositions of their muscle. In addition, the proximal and fatty acid compositions of colostrum and milk were studied. Goat colostrum had more protein and fat and less lactose than milk. Goat milk is an important source of healthy fatty acids such as C18:1 c9 and C18:2 n–6. Suckling kid meat was also an important source of C18:1c9. Dairy goat breeds had higher percentages of trans monounsaturated fatty acids (MUFAs) and most of the C18:1 isomers but lower amounts of total MUFAs than meat breeds. However, these dairy kids had meat with a lower percentage of conjugated linoleic acid (CLA) than meat kids. The meat of kids fed natural milk had higher amounts of CLA and branched chain fatty acids (BCFAs) and lower amounts of n–6 fatty acids than kids fed milk replacers. Both milk and meat are a source of linoleic, α-linolenic, docosahexaenoic, eicosapentaenoic and arachidonic fatty acids, which are essential fatty acids and healthy long-chain fatty acids.


2003 ◽  
Vol 67 (10) ◽  
pp. 2106-2114 ◽  
Author(s):  
Hirosuke OKU ◽  
Naoya FUTAMORI ◽  
Kenichi MASUDA ◽  
Yumiko SHIMABUKURO ◽  
Tomoyo OMINE ◽  
...  

2009 ◽  
Vol 191 (7) ◽  
pp. 2187-2196 ◽  
Author(s):  
Kristie Keeney ◽  
Lisa Colosi ◽  
Walter Weber ◽  
Mary O'Riordan

ABSTRACT The gram-positive bacterial pathogen Listeria monocytogenes has evolved mechanisms to rapidly replicate in the host cytosol, implying efficient utilization of host-derived nutrients. However, the contribution of host nutrient scavenging versus that of bacterial biosynthesis toward rapid intracellular growth remains unclear. Nutrients that contribute to growth of L. monocytogenes include branched-chain fatty acids (BCFAs), amino acids, and other metabolic intermediates generated from acyl-coenzyme A, which is synthesized using lipoylated metabolic enzyme complexes. To characterize which biosynthetic pathways support replication of L. monocytogenes inside the host cytosol, we impaired lipoate-dependent metabolism by disrupting two lipoate ligase genes that are responsible for bacterial protein lipoylation. Interrupting lipoate-dependent metabolism modestly impaired replication in rich broth medium but strongly inhibited growth in defined medium and host cells and impaired the generation of BCFAs. Addition of short BCFAs and amino acids restored growth of the A1A2-deficient (A1A2−) mutant in minimal medium, implying that lipoate-dependent metabolism generates amino acids and BCFAs. BCFAs alone rescued intracellular growth and spread in L2 fibroblasts of the A1A2− mutant. Lipoate-dependent metabolism was also required in vivo, as a wild-type strain robustly outcompeted the lipoylation-deficient mutant in a murine model of listeriosis. The results of this study suggest that lipoate-dependent metabolism contributes to both amino acid and BCFA biosynthesis and that BCFA biosynthesis is preferentially required for intracellular growth of L. monocytogenes.


1980 ◽  
Vol 26 (8) ◽  
pp. 893-898 ◽  
Author(s):  
Toshi Kaneda ◽  
E. J. Smith

Fatty acid compositions of lipids from six bacteria and four yeasts were determined. Fatty acid de novo synthetases were investigated with respect to chain length specificity towards acyl-CoA primers of various chain lengths.Four species of bacteria (Bacillus subtilis, Corynebacterium cyclohexanicum, Micrococcus luteus, and Pseudomonas maltophilia) possess branched-chain fatty acids of the iso and anteiso series as the major acids. De novo synthetases from these organisms exhibited specificity towards the chain length of the primer in the order butyrl-CoA > propionyl-CoA [Formula: see text] acetyl-CoA. The remainder, two bacteria and all four yeasts, have the straight-chain type of fatty acids only and fall into two groups: (1) Eschericia coli B, Pseudomonas fluorescens, and Saccharomyces cerevisiae, which utilize the primers in the order acetyl-CoA > propionyl-CoA [Formula: see text] butyryl-CoA; and (2) Candida sake, Candida tropicalis, and Rhodolorula glutinis, which show the order propionyl-CoA > acetyl-CoA [Formula: see text] butyryl-CoA.L-α-Keto-β-methylvalerate, a precursor of the branched-chain primers, can be used as a source of primer for fatty acid synthesis by the organisms with branched-chain acids but not by those with the straight-chain type.The results indicate that organisms having straight-chain fatty acids lack the branched-chain equivalents for two reasons: first, their enzymes are not active toward primers with more than three carbons, and second, they lack a system of supplying suitable branched-chain primers.It appears that activities of de novo synthetases from the organisms having straight-chain fatty acids generally have much higher activities than those from the organisms possessing branched-chain fatty acids.


2002 ◽  
Vol 68 (6) ◽  
pp. 2809-2813 ◽  
Author(s):  
David S. Nichols ◽  
Kirsty A. Presser ◽  
June Olley ◽  
Tom Ross ◽  
Tom A. McMeekin

ABSTRACT The fatty acid composition of Listeria monocytogenes Scott A was determined by close-interval sampling over the entire biokinetic temperature range. There was a high degree of variation in the percentage of branched-chain fatty acids at any given temperature. The percentage of branched C17 components increased with growth temperature in a linear manner. However, the percentages of iso-C15:0 (i15:0) and anteiso-C15:0 (a15:0) were well described by third-order and second-order polynomial curves, respectively. There were specific temperature regions where the proportion of branched-chain fatty acids deviated significantly from the trend established over the entire growth range. In the region from 12 to 13°C there were significant deviations in the percentages of both i15:0 and a15:0 together with a suggested deviation in a17:0, resulting in a significant change in the total branched-chain fatty acids. In the 31 to 33°C region the percentage of total branched-chain components exhibited a significant deviation. The observed perturbations in fatty acid composition occurred near the estimated boundaries of the normal physiological range for growth.


1983 ◽  
Vol 29 (12) ◽  
pp. 1634-1641 ◽  
Author(s):  
Toshi Kaneda ◽  
Eleanor J. Smith ◽  
Devarray N. Naik

The fatty acid compositions of three psychrophilic species of Bacillus were determined by gas–liquid chromatography. The proportions of straight-chain fatty acids, branched-chain fatty acids, and unsaturated fatty acids were found to be 13.3, 86.7, and 26.1 % of the total cellular fatty acids for Bacillus globispores, 36.6, 63.4, and 25.1 % for Bacillus insolitus, and 6.9, 93.1, and 18.4% for Bacillus psychrophilus, respectively. In all three organisms the de novo fatty acid synthetase specificity towards acyl-CoA primers was butyryl-CoA > propionyl-CoA [Formula: see text] acetyl-CoA. This shows that B. insolitus, which has an unusually large proportion of straight-chain fatty acids for Bacillus, does not possess a different de novo fatty acid synthetase than the other two organisms. Therefore, the greater proportion of straight-chain fatty acids in B. insolitus may be explained by a large supply of straight-chain primer.


Sign in / Sign up

Export Citation Format

Share Document