scholarly journals Transport of the Harmful Bloom Alga Aureococcus anophagefferens by Oceangoing Ships and Coastal Boats

2004 ◽  
Vol 70 (11) ◽  
pp. 6495-6500 ◽  
Author(s):  
Martina A. Doblin ◽  
Linda C. Popels ◽  
Kathryn J. Coyne ◽  
David A. Hutchins ◽  
S. Craig Cary ◽  
...  

ABSTRACT It is well established that cyst-forming phytoplankton species are transported in ships' ballast tanks. However, there is increasing evidence that other phytoplankton species which do not encyst are also capable of surviving ballast transit. These species have alternative modes of nutrition (hetero- or mixotrophy) and/or are able to survive long-term darkness. In our studies of no-ballast-on-board vessels arriving in the Great Lakes, we tested for the presence of the harmful algal bloom species Aureococcus anophagefferens (brown tide) in residual (i.e., unpumpable) ballast water using methods based on the PCR. During 2001, the brown tide organism was detected in 7 of 18 ballast water tanks in commercial ships following transit from foreign ports. Furthermore, it was detected after 10 days of ballast tank confinement during a vessel transit in the Great Lakes, a significant result given the large disparity between the salinity tolerance for active growth of Aureococcus (>22 ppt) and the low salinity of the residual ballast water (∼2 ppt). We also investigated the potential for smaller, recreational vessels to transport and distribute Aureococcus. During the summer of 2002, 11 trailered boats from the inland bays of Delaware and coastal bays of Maryland were sampled. Brown tide was detected in the bilge water in the bottoms of eight boats, as well as in one live-well sample. Commercial ships and small recreational boats are therefore implicated as potential vectors for long-distance transport and local-scale dispersal of Aureococcus.

2002 ◽  
Vol 59 (7) ◽  
pp. 1245-1256 ◽  
Author(s):  
Hugh J MacIsaac ◽  
Thomas C Robbins ◽  
Mark A Lewis

The spread of nonindigenous species (NIS) in aquatic ecosystems provides an opportunity to develop new perspectives on the invasion process. In this paper we review existing invasion models, most of which were developed to describe invasions of terrestrial habitats, and propose an alternative that explores long-distance invasions mediated by discharge of contaminated ballast water by ships inbound to the Great Lakes. Based on current knowledge of shipping traffic to the Great Lakes, our model predicts that mid-ocean exchange of ballast water lowers propagule delivery by approximately three to four orders of magnitude relative to unexchanged ballast water. Propagule pressure of individual ships that enter the Great Lakes loaded with cargo and that declare "no ballast on board" (NOBOB) is typically one to two orders of magnitude higher than that of vessels that exchange ballast. Because NOBOB vessels dominate (~90%) inbound traffic into the Great Lakes, these vessels collectively appear to pose the greatest risk of new introductions, even though their individual risks are low.


2015 ◽  
Vol 52 (6) ◽  
pp. 386-404 ◽  
Author(s):  
A.F. Bajc ◽  
P.F. Karrow ◽  
C.H. Yansa ◽  
B.B. Curry ◽  
Jeffrey C. Nekola ◽  
...  

Nonglacial deposits of Middle Wisconsin age are being discovered with increased frequency across a broad region of southern Ontario, Canada, and provide strong evidence for a time of significant ice withdrawal from the lower Great Lakes region. With each new discovery, a refined understanding of regional climatic and paleoecological environments is emerging. In this paper, we present the results of a sedimentological and paleoecological study of a subtill organic deposit in Zorra Township, southwestern Ontario. The organic deposit, which lies beneath Nissouri Phase Catfish Creek Till (Late Wisconsin), has been dated by accelerator mass spectrometry at between 50.5 and 42.9 14C ka BP. The organic remains are contained within slack water pond deposits infilling a channel incised into till either of Early Wisconsin or Illinoian age. The fossil assemblage appears to be strongly influenced by taphonomic processes, including degradation due to oxidation, bacterial and fungal decay, and glacial overriding. Reworking and (or) recycling and selective sorting as well as long-distance transport has also influenced the composition of the fossil assemblage preserved. Nonetheless, meaningful paleoecological information is still obtained from this record. Collectively, the pollen and plant macrofossils indicate a boreal-type pine–spruce forest with temperatures cooler than present. The absence of arctic tundra plants, as are found in many other deposits of similar age in the lower Great Lakes basin, is notable. A pond or wetland inhabited by shoreline herbs, shrubs, and trees was present at or proximal to the site. The freshwater mollusc and ostracode assemblages are consistent with a shallow water habitat with dense submerged vegetation. The terrestrial mollusc assemblage suggests a taiga or transitional taiga–tundra fauna. Together, these fossil groups provide one of the most comprehensive environmental reconstructions of Middle Wisconsin time (oxygen isotope stage 3 or OIS3) in southern Ontario and serve to build on the ever-increasing database of paleoecological information accumulating for this episode of the late Quaternary.


Author(s):  
James Cronshaw

Long distance transport in plants takes place in phloem tissue which has characteristic cells, the sieve elements. At maturity these cells have sieve areas in their end walls with specialized perforations. They are associated with companion cells, parenchyma cells, and in some species, with transfer cells. The protoplast of the functioning sieve element contains a high concentration of sugar, and consequently a high hydrostatic pressure, which makes it extremely difficult to fix mature sieve elements for electron microscopical observation without the formation of surge artifacts. Despite many structural studies which have attempted to prevent surge artifacts, several features of mature sieve elements, such as the distribution of P-protein and the nature of the contents of the sieve area pores, remain controversial.


Author(s):  
Anita Roth-Nebelsick ◽  
Tatiana Miranda ◽  
Martin Ebner ◽  
Wilfried Konrad ◽  
Christopher Traiser

AbstractTrees are the fundamental element of forest ecosystems, made possible by their mechanical qualities and their highly sophisticated conductive tissues. The evolution of trees, and thereby the evolution of forests, were ecologically transformative and affected climate and biogeochemical cycles fundamentally. Trees also offer a substantial amount of ecological niches for other organisms, such as epiphytes, creating a vast amount of habitats. During land plant evolution, a variety of different tree constructions evolved and their constructional principles are a subject of ongoing research. Understanding the “natural construction” of trees benefits strongly from methods and approaches from physics and engineering. Plant water transport is a good example for the ongoing demand for interdisciplinary efforts to unravel form-function relationships on vastly differing scales. Identification of the unique mechanism of water long-distance transport requires a solid basis of interfacial physics and thermodynamics. Studying tree functions by using theoretical approaches is, however, not a one-sided affair: The complex interrelationships between traits, functionality, trade-offs and phylogeny inspire engineers, physicists and architects until today.


2021 ◽  
Vol 7 (3) ◽  
pp. eabc8873
Author(s):  
Peng Qin ◽  
Guohua Zhang ◽  
Binhua Hu ◽  
Jie Wu ◽  
Weilan Chen ◽  
...  

Long-distance transport of the phytohormone abscisic acid (ABA) has been studied for ~50 years, yet its mechanistic basis and biological significance remain very poorly understood. Here, we show that leaf-derived ABA controls rice seed development in a temperature-dependent manner and is regulated by defective grain-filling 1 (DG1), a multidrug and toxic compound extrusion transporter that effluxes ABA at nodes and rachilla. Specifically, ABA is biosynthesized in both WT and dg1 leaves, but only WT caryopses accumulate leaf-derived ABA. Our demonstration that leaf-derived ABA activates starch synthesis genes explains the incompletely filled and floury seed phenotypes in dg1. Both the DG1-mediated long-distance ABA transport efficiency and grain-filling phenotypes are temperature sensitive. Moreover, we extended these mechanistic insights to other cereals by observing similar grain-filling defects in a maize DG1 ortholog mutant. Our study demonstrates that rice uses a leaf-to-caryopsis ABA transport–based mechanism to ensure normal seed development in response to variable temperatures.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yi Huang-Takeshi Kohda ◽  
Zhaojie Qian ◽  
Mei-Fang Chien ◽  
Keisuke Miyauchi ◽  
Ginro Endo ◽  
...  

AbstractPteris vittata is an arsenic (As) hyperaccumulator plant that accumulates a large amount of As into fronds and rhizomes (around 16,000 mg/kg in both after 16 weeks hydroponic cultivation with 30 mg/L arsenate). However, the sequence of long-distance transport of As in this hyperaccumulator plant is unclear. In this study, we used a positron-emitting tracer imaging system (PETIS) for the first time to obtain noninvasive serial images of As behavior in living plants with positron-emitting 74As-labeled tracer. We found that As kept accumulating in rhizomes as in fronds of P. vittata, whereas As was retained in roots of a non-accumulator plant Arabidopsis thaliana. Autoradiograph results of As distribution in P. vittata showed that with low As exposure, As was predominantly accumulated in young fronds and the midrib and rachis of mature fronds. Under high As exposure, As accumulation shifted from young fronds to mature fronds, especially in the margin of pinna, which resulted in necrotic symptoms, turning the marginal color to gray and then brown. Our results indicated that the function of rhizomes in P. vittata was As accumulation and the regulation of As translocation to the mature fronds to protect the young fronds under high As exposure.


Sign in / Sign up

Export Citation Format

Share Document