scholarly journals Detection of Schistosoma mansoni Membrane Antigens by Immunoblot Analysis of Sera of Patients from Low-Transmission Areas

2005 ◽  
Vol 12 (2) ◽  
pp. 280-286 ◽  
Author(s):  
Italo M. Cesari ◽  
Diana E. Ballen ◽  
Leydi Mendoza ◽  
César Matos

ABSTRACT Schistosoma mansoni surface membrane components play a relevant role in the host-parasite interaction, and some are released in vivo as circulating antigens. n-Butanol extraction favors the release of membrane antigens like alkaline phosphatase, which has been shown to be specifically recognized by antibodies from S. mansoni-infected humans and animals. In the present study, components in the n-butanol extract (BE) of the adult S. mansoni worm membrane fraction were separated by one-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis (1D SDS-PAGE [15%]) and further analyzed by immunoblotting (immunoglobulin G) using defined sera. S. mansoni-infected patient sera, but not sera of uninfected patients or sera obtained from patients infected with other parasite species, specifically and variably recognized up to 20 polypeptides in the molecular mass range of ∼8 to >80 kDa. There were some differences in the number, intensity, and frequency of recognition of the BE antigens among sera from Venezuelan sites of endemicity with a different status of schistosomiasis transmission. Antigens in the 28- to 24-kDa molecular mass range appeared as immunodominants and were recognized by S. mansoni-positive sera from all the sites, with recognition frequencies varying between 57.5 and 97.5%. Immunoblotting with BE membrane antigens resulted in a highly sensitive (98.1%), specific (96.1.0%), and confirmatory test for the immunodiagnosis of schistosomiasis in low-transmission areas.

1984 ◽  
Vol 221 (3) ◽  
pp. 821-828 ◽  
Author(s):  
S J Fisher ◽  
M S Leitch ◽  
R A Laine

The brush-border glycoproteins of first-trimester human placentas were investigated by using two external labelling techniques: (1) sequential digestion with neuraminidase and galactose oxidase, followed by reduction with NaB3H4, which 3H-labels terminal galactose and galactosamine residues; and (2) sequential treatment with periodate and NaB3H4, which 3H-labels terminal sialic acid residues. The labelling procedures were performed on intact tissue so that the results would more closely approximate the topography of the brush border in vivo. The microvilli were isolated, subjected to sodium dodecyl sulphate/polyacrylamide-gel electrophoresis, and the [3H]glycoproteins detected by fluorography. Densitometer scans of the fluorograms of the [3H]galactoproteins showed that, under reducing conditions, 90% of the protein-associated radioactivity was incorporated into two glycoproteins. The major [3H]galactoprotein of early placental microvilli had an estimated molecular mass of 92 kDa (desialylated) and migrated as a diffuse band. A minor 180 kDa glycoprotein was less consistently labelled. No change in the apparent molecular mass of either component was detected in the absence of beta-mercaptoethanol, suggesting that the 180 kDa component was not a dimer of the 92 kDa glycoprotein. The remaining 10% the radioactivity was equally distributed among several minor membrane components. Densitometer scans of the fluorograms of the [3H]sialoproteins showed that, under either reducing or non-reducing conditions, 90% of the 3H was preferentially incorporated into the 92-110 kDa region of the gel. Although no distinct bands were visible, the higher-molecular-mass region of this area was always most heavily labelled. A minor 180 kDa glycoprotein was also 3H-labelled. The pattern of brushborder [3H]glycoproteins from first-trimester placentas differed markedly from that of term placental microvilli and from placental fibroblast plasma membranes that were 3H-labelled by identical external labelling techniques. These results indicate that: (1) the glycoprotein determinants of brush-border topography change during pregnancy; (2) within the placenta, the major 92 kDa (desialylated) determinant, which has not been previously described, is unique to the trophoblastic cells.


Parasitology ◽  
1987 ◽  
Vol 95 (3) ◽  
pp. 479-489 ◽  
Author(s):  
M. H. Wisher ◽  
M. E. Rose

SUMMARYEimerian sporozoites can be recovered from intestinal washings after oral administration of oocysts to chickens but suspensions of sporozoites are usually prepared in the laboratory by incubation of sporocysts or fractured oocysts in vitro, at body temperatures, with relatively high concentrations of trypsin and bile salts. Since these agents affect membrane structure, the surface membrane of proteins of Eimeria tenella sporozoites excysted in vivo and in vitro have been compared. Surface radio-iodination followed by sodium dodecyl sulphate–polyacrylamide gel electrophoresis (SDS–PAGE) showed that more 125I was incorporated into polypeptides on sporozoites excysted in vivo than on sporozoites excysted in vitro. The 125I-polypeptide profile of sporozoites excysted in vivo was more resistant to subsequent incubation with pure trypsin than that of sporozoites excysted in vitro, but incubation with bile salts resulted in the loss of some iodinated polypeptides from both preparations of iodinated sporozoites. Reaction with combinations of crude trypsin and bile salts led to the lysis of sporozoites. The method of excystation had no effect on the reaction of convalescent chicken serum with Western blots of sporozoites but the results of immunofluorescent staining carried out with mouse monoclonal antibodies indicated that the structure of the cell surface was altered and some antigenic determinants were lost from sporozoites excysted in vitro. In contrast, neither the infectivity of sporozoites determined in vivo, nor their invasion of cultured cells was changed by the method of excystation.


1990 ◽  
Vol 258 (2) ◽  
pp. C344-C351 ◽  
Author(s):  
H. Schmidt ◽  
G. Wegener

White skeletal muscle of crucian carp contains a single isoenzyme of glycogen phosphorylase, which was purified approximately 300-fold to a specific activity of approximately 13 mumol.min-1.mg protein-1 (assayed in the direction of glycogen breakdown at 25 degrees C). Tissue extracts of crucian muscle produced three distinct peaks of phosphorylase activity when separated on DEAE-Sephacel. Peaks 1 and 3 were identified, in terms of kinetic properties and by interconversion experiments, as phosphorylase b and a, respectively. Peak 2 was shown to be a phospho-dephospho hybrid. The three interconvertible forms of phosphorylase were purified and shown to be dimeric molecules at 20 degrees C. At 5 degrees C, a and the hybrid tended to form tetramers. The Mr of the subunit was estimated to be 96,400 from sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The hybrid is kinetically homogeneous, and its kinetic properties are intermediate between those of b and a forms. The b, hybrid, and a forms of phosphorylase can be isolated from rapidly frozen muscle of crucian but in different proportions, depending on whether fish were anesthetized or forced to muscular activity for 20 s. Muscle of anesthetized crucian had 36, 36, and 28% of phosphorylase b, hybrid, and a forms, respectively, whereas the corresponding values for exercised fish were 12, 37, and 51%. Results suggest that three interconvertible forms of phosphorylase exist simultaneously in crucian muscle and that hybrid phosphorylase is active in contracting muscle in vivo.


1988 ◽  
Vol 254 (2) ◽  
pp. 419-426 ◽  
Author(s):  
P M Wiest ◽  
E J Tisdale ◽  
W L Roberts ◽  
T L Rosenberry ◽  
A A F Mahmoud ◽  
...  

Biosynthetic labelling experiments with cercariae and schistosomula of the multicellular parasitic trematode Schistosoma mansoni were performed to determine whether [3H]palmitate or [3H]ethanolamine was incorporated into proteins. Parasites incorporated [3H]palmitate into numerous proteins, as judged by SDS/polyacrylamide-gel electrophoresis and fluorography. The radiolabel was resistant to extraction with chloroform, but sensitive to alkaline hydrolysis, indicating the presence of an ester bond. Further investigation of the major 22 kDa [3H]palmitate-labelled species showed that the label could be recovered in a Pronase fragment which bound detergent and had an apparent molecular mass of 1200 Da as determined by gel filtration on Sephadex LH-20. Schistosomula incubated with [3H]ethanolamine for up to 24 h incorporated this precursor into several proteins; labelled Pronase fragments recovered from the three most intensely labelled proteins were hydrophilic and had a molecular mass of approx. 200 Da. Furthermore, reductive methylation of such fragments showed that the [3H]ethanolamine bears a free amino group, indicating the lack of an amide linkage. We also evaluated the effect of phosphatidylinositol-specific phospholipase C from Staphylococcus aureus: [3H]palmitate-labelled proteins of schistosomula and surface-iodinated proteins were resistant to hydrolysis with this enzyme. In conclusion, [3H]palmitate and [3H]ethanolamine are incorporated into distinct proteins of cercariae and schistosomula which do not bear glycophospholipid anchors. The [3H]ethanolamine-labelled proteins represent a novel variety of protein modification.


2003 ◽  
Vol 49 (10) ◽  
pp. 625-632 ◽  
Author(s):  
Claudia Masini d'Avila-Levy ◽  
Rodrigo F Souza ◽  
Rosana C Gomes ◽  
Alane B Vermelho ◽  
Marta H Branquinha

Actively motile cells from a cured strain of Crithidia deanei released proteins in phosphate buffer (pH 7.4). The molecular mass of the released polypeptides, which included some proteinases, ranged from 19 to 116 kDa. One of the major protein bands was purified to homogeneity by a combination of anion-exchange and gel filtration chromatographs. The apparent molecular mass of this protein was estimated to be 62 kDa by sodium dodecyl sulfate – polyacrylamide gel electrophoresis (SDS–PAGE). The incorporation of gelatin into SDS–PAGE showed that the purified protein presented proteolytic activity in a position corresponding to a molecular mass of 60 kDa. The enzyme was optimally active at 37 °C and pH 6.0 and showed 25% of residual activity at 28 °C for 30 min. The proteinase was inhibited by 1,10-phenanthroline and EDTA, showing that it belonged to the metalloproteinase class. A polyclonal antibody to the leishmanial gp63 reacted strongly with the released C. deanei protease. After Triton X-114 extraction, an enzyme similar to the purified metalloproteinase was detected in aqueous and detergent-rich phases. The detection of an extracellular metalloproteinase produced by C. deanei and some other Crithidia species suggests a potential role of this released enzyme in substrate degradation that may be relevant to the survival of trypanosomatids in the host.Key words: endosymbiont, trypanosomatid, extracellular, proteinase.


2009 ◽  
Vol 72 (12) ◽  
pp. 2524-2529 ◽  
Author(s):  
JINLAN ZHANG ◽  
GUORONG LIU ◽  
NAN SHANG ◽  
WANPENG CHENG ◽  
SHANGWU CHEN ◽  
...  

Pentocin 31-1, an anti-Listeria bacteriocin produced by Lactobacillus pentosus 31-1 from the traditional Chinese fermented Xuan-Wei ham, was successfully purified by the pH-mediated cell adsorption-desorption method and then purified by gel chromatography with Sephadex G-10. The purification resulted in a 1,381.9-fold increase in specific activity with a yield of 76.8% of the original activity. Using Tricine–sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-PAGE), the molecular mass of the purified peptide was found to be between 3,500 and 6,400 Da, and bacteriocin activity was confirmed by overlayer techniques. When subjected to mass spectrometry analysis, the protein was highly pure and its molecular mass was 5,592.225 Da. The partial N-terminal sequence of pentocin 31-1 was the following: NH2-VIADYGNGVRXATLL. Compared with the sequence of other bacteriocins, pentocin 31-1 has the consensus sequence YGNGV in its N-terminal region, and therefore it belongs to the class IIa of bacteriocins.


1998 ◽  
Vol 66 (9) ◽  
pp. 4374-4381 ◽  
Author(s):  
John C. McMichael ◽  
Michael J. Fiske ◽  
Ross A. Fredenburg ◽  
Deb N. Chakravarti ◽  
Karl R. VanDerMeid ◽  
...  

ABSTRACT The UspA1 and UspA2 proteins of Moraxella catarrhalisare potential vaccine candidates for preventing disease caused by this organism. We have characterized both proteins and evaluated their vaccine potential using both in vitro and in vivo assays. Both proteins were purified from the O35E isolate by Triton X-100 extraction, followed by ion-exchange and hydroxyapatite chromatography. Analysis of the sequences of internal peptides, prepared by enzymatic and chemical cleavage of the proteins, revealed that UspA1 and UspA2 exhibited distinct structural differences but shared a common sequence including an epitope recognized by the monoclonal antibody 17C7. By sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), purified UspA1 exhibited a molecular weight of approximately 350,000 when unheated and a molecular weight of 100,000 after being heated for 10 min at 100°C. In contrast, purified UspA2 exhibited an apparent molecular weight of 240,000 by SDS-PAGE that did not change with the length of time of heating. Their sizes as determined by gel filtration were 1,150,000 and 830,000 for UspA1 and UspA2, respectively. Preliminary results indicate the proteins have separate functions in bacterial pathogenesis. Purified UspA1 was found to bind HEp-2 cells, and sera against UspA1, but not against UspA2, blocked binding of the O35E isolate to the HEp-2 cells. UspA1 also bound fibronectin and appears to have a role in bacterial attachment. Purified UspA2, however, did not bind fibronectin but had an affinity for vitronectin. Both proteins elicited bactericidal antibodies in mice to homologous and heterologous disease isolates. Finally, mice immunized with each of the proteins, followed by pulmonary challenge with either the homologous or a heterologous isolate, cleared the bacteria more rapidly than mock-immunized mice. These results suggest that UspA1 and UspA2 serve different virulence functions and that both are promising vaccine candidates.


1983 ◽  
Vol 59 (1) ◽  
pp. 81-103 ◽  
Author(s):  
R. Crossley ◽  
D.V. Holberton

Proteins from the axonemes and disc cytoskeleton of Giardia lamblia have been examined by sodium dodecyl sulphate/polyacrylamide gel electrophoresis. In addition to tubulin and the 30 X 10(3) molecular weight disc protein, at least 18 minor components copurify with the two major proteins in Triton-insoluble structures. The most prominent minor bands have the apparent molecular weights of 110 X 10(3), 95 X 10(3) and 81 X 10(3). Protein of 30 X 10(3) molecular weight accounts for about 20% of organelle protein on gels. In continuous 25 mM-Tris-glycine buffer it migrates mostly as a close-spaced doublet of polypeptides, which are here given the name giardins. Giardia tubulin and giardin have been purified by gel filtration chromatography in the presence of sodium dodecyl sulphate. Well-separated fractions were obtained that could be further characterized. Both proteins are heterogeneous when examined by isoelectric focusing. Five tubulin chains were detected by PAGE Blue 83 dye-binding after focusing in a broad-range ampholyte gel. Giardin is slightly less acidic than tubulin. On gels it splits into four major and four minor chains with isoelectric points in the pI range from 5.8 to 6.2. The amino acid composition of the giardin fraction has been determined, and compared to Giardia tubulin and a rat brain tubulin standard. Giardins are rich in helix-forming residues, particularly leucine. They have a low content of proline and glycine; therefore they may have extensive alpha-helical regions and be rod-shaped. As integral proteins of disc microribbons, giardins in vivo associate closely with tubulin. The properties of giardins indicate that in a number of respects - molecular size, charge, stoichiometry - their structural interaction with tubulin assemblies will be different from other tubulin-accessory protein copolymers studied in vitro.


1999 ◽  
Vol 181 (1) ◽  
pp. 91-99 ◽  
Author(s):  
Hisayo Ono ◽  
Kazuhisa Sawada ◽  
Nonpanga Khunajakr ◽  
Tao Tao ◽  
Mihoko Yamamoto ◽  
...  

ABSTRACT 1,4,5,6-Tetrahydro-2-methyl-4-pyrimidinecarboxylic acid (ectoine) is an excellent osmoprotectant. The biosynthetic pathway of ectoine from aspartic β-semialdehyde (ASA), in Halomonas elongata, was elucidated by purification and characterization of each enzyme involved. 2,4-Diaminobutyrate (DABA) aminotransferase catalyzed reversively the first step of the pathway, conversion of ASA to DABA by transamination with l-glutamate. This enzyme required pyridoxal 5′-phosphate and potassium ions for its activity and stability. The gel filtration estimated an apparent molecular mass of 260 kDa, whereas molecular mass measured by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) was 44 kDa. This enzyme exhibited an optimum pH of 8.6 and an optimum temperature of 25°C and had Km s of 9.1 mM forl-glutamate and 4.5 mM for dl-ASA. DABA acetyltransferase catalyzed acetylation of DABA to γ-N-acetyl-α,γ-diaminobutyric acid (ADABA) with acetyl coenzyme A and exhibited an optimum pH of 8.2 and an optimum temperature of 20°C in the presence of 0.4 M NaCl. The molecular mass was 45 kDa by gel filtration. Ectoine synthase catalyzed circularization of ADABA to ectoine and exhibited an optimum pH of 8.5 to 9.0 and an optimum temperature of 15°C in the presence of 0.5 M NaCl. This enzyme had an apparent molecular mass of 19 kDa by SDS-PAGE and a Km of 8.4 mM in the presence of 0.77 M NaCl. DABA acetyltransferase and ectoine synthase were stabilized in the presence of NaCl (>2 M) and DABA (100 mM) at temperatures below 30°C.


1980 ◽  
Vol 189 (1) ◽  
pp. 9-15 ◽  
Author(s):  
Yoav Ben-Yoseph ◽  
Melinda Hungerford ◽  
Henry L. Nadler

Galactocerebrosidase (β-d-galactosyl-N-acylsphingosine galactohydrolase; EC 3.2.1.46) activity of brain and liver preparations from normal individuals and patients with Krabbe disease (globoid-cell leukodystrophy) have been separated by gel filtration into four different molecular-weight forms. The apparent mol.wts. were 760000±34000 and 121000±10000 for the high- and low-molecular-weight forms (peaks I and IV respectively) and 499000±22000 (mean±s.d.) and 256000±12000 for the intermediate forms (peaks II and III respectively). On examination by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis, the high- and low-molecular-weight forms revealed a single protein band with a similar mobility corresponding to a mol.wt. of about 125000. Antigenic identity was demonstrated between the various molecular-weight forms of the normal and the mutant galactocerebrosidases by using antisera against either the high- or the low-molecular-weight enzymes. The high-molecular-weight form of galactocerebrosidase was found to possess higher specific activity toward natural substrates when compared with the low-molecular-weight form. It is suggested that the high-molecular-weight enzyme is the active form in vivo and an aggregation process that proceeds from a monomer (mol.wt. approx. 125000) to a dimer (mol.wt. approx. 250000) and from the dimer to either a tetramer (mol.wt. approx. 500000) or a hexamer (mol.wt. approx. 750000) takes place in normal as well as in Krabbe-disease tissues.


Sign in / Sign up

Export Citation Format

Share Document