scholarly journals Assessment of Markers of the Cell-Mediated Immune Response after Influenza Virus Infection in Frail Older Adults

1998 ◽  
Vol 5 (6) ◽  
pp. 840-844 ◽  
Author(s):  
Janet E. McElhaney ◽  
Stefan Gravenstein ◽  
Peggy Krause ◽  
Jonathan W. Hooton ◽  
Craig M. Upshaw ◽  
...  

ABSTRACT The purpose of this study was to determine whether measures of the cell-mediated immune response to influenza virus could be used as markers of influenza virus infection. We studied 23 subjects who developed upper respiratory, lower respiratory, or systemic symptoms during a small outbreak of influenza in a nursing home population. Influenza virus culture from nasopharyngeal swabs yielded influenza virus isolates from 7 of the 23 subjects. Only three of the subjects had a fourfold rise in antibody titer to the influenza virus antigen positivity after the infection. Granzyme B and cytokine levels were measured in peripheral blood mononuclear cells (PBMC) obtained from all subjects and stimulated with live influenza virus. Elevated granzyme B levels in virus-stimulated PBMC in combination with lower respiratory tract or systemic symptoms in study subjects was a significant predictor of culture-confirmed influenza virus infection compared to those from whom influenza virus could not be identified. Cytokine levels did not distinguish between the two groups in a similar type of analysis. Granzyme B in combination with the clinical profile of symptoms may be a useful retrospective marker for influenza virus infection.

2016 ◽  
Vol 90 (17) ◽  
pp. 7991-8004 ◽  
Author(s):  
Anthony DiPiazza ◽  
Katherine Richards ◽  
Frances Batarse ◽  
Laura Lockard ◽  
Hui Zeng ◽  
...  

ABSTRACTInfluenza virus infections represent a significant socioeconomic and public health burden worldwide. Although ferrets are considered by many to be ideal for modeling human responses to influenza infection and vaccination, efforts to understand the cellular immune response have been severely hampered by a paucity of standardized procedures and reagents. In this study, we developed flow cytometric and T cell enzyme-linked immunosorbent spot (ELISpot) approaches to characterize the leukocyte composition and antigen-specific T cell response within key lymphoid tissues following influenza virus infection in ferrets. Through a newly designed and implemented set of serological reagents, we used multiparameter flow cytometry to directly quantify the frequency of CD4+and CD8+T cells, Ig+B cells, CD11b+myeloid-derived cells, and major histocompatibility complex (MHC) class II-positive antigen-presenting cells (APCs) both prior to and after intranasal infection with A/California/04/09 (H1N1). We found that the leukocyte composition was altered at 10 days postinfection, with notable gains in the frequency of T cells and myeloid cells within the draining lymph node. Furthermore, these studies revealed that the antigen specificity of influenza virus-reactive CD4 and CD8 T cells was very broad, with recognition of the viral HA, NA, M1, NS1, and NP proteins, and that total reactivity to influenza virus postinfection represented approximately 0.1% of the circulating peripheral blood mononuclear cells (PBMC). Finally, we observed distinct patterns of reactivity between individual animals, suggesting heterogeneity at the MHC locus in ferrets within commercial populations, a finding of considerable interest in efforts to move the ferret model forward for influenza vaccine and challenge studies.IMPORTANCEFerrets are an ideal animal model to study transmission, diseases, and vaccine efficacies of respiratory viruses because of their close anatomical and physiological resemblances to humans. However, a lack of reagents has limited our understanding of the cell-mediated immune response following infection and vaccination. In this study, we used cross-reactive and ferret-specific antibodies to study the leukocyte composition and antigen-specific CD4 and CD8 T cell responses following influenza A/California/04/09 (H1N1) virus infection. These studies revealed strikingly distinct patterns of reactivity between CD4 and CD8 T cells, which were overlaid with differences in protein-specific responses between individual animals. Our results provide a first, in-depth look at the T cell repertoire in response to influenza infection and suggest that there is considerable heterogeneity at the MHC locus, which is akin to that in humans and an area of intense research interest.


PLoS ONE ◽  
2010 ◽  
Vol 5 (10) ◽  
pp. e13099 ◽  
Author(s):  
Vidya A. Arankalle ◽  
Kavita S. Lole ◽  
Ravi P. Arya ◽  
Anuradha S. Tripathy ◽  
Ashwini Y. Ramdasi ◽  
...  

Viruses ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 379 ◽  
Author(s):  
Norbert J. Roberts

Human monocytes/macrophages play a central role in the immune response and defense of the host from influenza virus infection. They classically act as antigen-presenting cells for lymphocytes in the context of an immune cell cluster. In that setting, however, monocytes/macrophages exhibit additional, unexpected, roles. They are required for influenza virus infection of the lymphocytes in the cluster, and they are responsible for lymphocyte apoptosis via their synthesis and expression of the viral neuraminidase. Surprisingly, human alveolar macrophages, expected to be among the first cells to encounter the virus, are not susceptible to direct infection by a human influenza virus but can be infected when the virus is complexed with an antibody. Such monocyte/macrophage responses to influenza virus challenge should be considered part of a very complex but quite effective defense, since the common outcome is recovery of the host with development of immunity to the challenging strain of virus.


2014 ◽  
Vol 21 (5) ◽  
pp. 737-746 ◽  
Author(s):  
Christopher D. O'Donnell ◽  
Amber Wright ◽  
Leatrice Vogel ◽  
Kobporn Boonnak ◽  
John J. Treanor ◽  
...  

ABSTRACTThe hypothesis of original antigenic sin (OAS) states that the imprint established by an individual's first influenza virus infection governs the antibody response thereafter. Subsequent influenza virus infection results in an antibody response against the original infecting virus and an impaired immune response against the newer influenza virus. The purpose of our study was to seek evidence of OAS after infection or vaccination with the 2009 pandemic H1N1 (2009 pH1N1) virus in ferrets and humans previously infected with H1N1 viruses with various antigenic distances from the 2009 pH1N1 virus, including viruses from 1935 through 1999. In ferrets, seasonal H1N1 priming did not diminish the antibody response to infection or vaccination with the 2009 pH1N1 virus, nor did it diminish the T-cell response, indicating the absence of OAS in seasonal H1N1 virus-primed ferrets. Analysis of paired samples of human serum taken before and after vaccination with a monovalent inactivated 2009 pH1N1 vaccine showed a significantly greater-fold rise in the titer of antibody against the 2009 pH1N1 virus than against H1N1 viruses that circulated during the childhood of each subject. Thus, prior experience with H1N1 viruses did not result in an impairment of the antibody response against the 2009 pH1N1 vaccine. Our data from ferrets and humans suggest that prior exposure to H1N1 viruses did not impair the immune response against the 2009 pH1N1 virus.


2000 ◽  
Vol 164 (1) ◽  
pp. 79-85 ◽  
Author(s):  
Joanne M. Lumsden ◽  
Joanna M. Roberts ◽  
Nicola L. Harris ◽  
Robert J. Peach ◽  
Franca Ronchese

Sign in / Sign up

Export Citation Format

Share Document