scholarly journals Multiplex Assay for Detection of Strain-Specific Antibodies against the Two Variable Regions of the G Protein of Respiratory Syncytial Virus

2002 ◽  
Vol 9 (3) ◽  
pp. 633-638 ◽  
Author(s):  
Les P. Jones ◽  
Hao-Qiang Zheng ◽  
Ruth A. Karron ◽  
Teresa C. T. Peret ◽  
Cecelia Tsou ◽  
...  

ABSTRACT The role of strain differences in respiratory syncytial virus (RSV) disease has not been clearly defined. To investigate the possibility that strain differences contribute to susceptibility to repeat infections, we developed assays to detect antibodies to the two variable regions of the RSV G protein by cloning and expressing the internal variable region at amino acids (aa) 60 to 172 (g1) and the carboxy-terminal variable region at aa 193 to the carboxy terminus (g2) from different genotypes of RSV. The purified proteins were covalently linked to beads with different proportions of red and orange fluorescent dyes and reacted against serum specimens. Antibody reacting against the differently colored beads, and thus against different G polypeptides, was detected by use of flow cytometry and the Luminex system. This assay system detected group- and, to some extent, genotype-specific responses to RSV infection and can be used to investigate the role of strain differences in RSV disease.

2009 ◽  
Vol 5 (1) ◽  
pp. e1000254 ◽  
Author(s):  
Viviane F. Botosso ◽  
Paolo M. de A. Zanotto ◽  
Mirthes Ueda ◽  
Eurico Arruda ◽  
Alfredo E. Gilio ◽  
...  

PEDIATRICS ◽  
1995 ◽  
Vol 96 (2) ◽  
pp. 391-391
Author(s):  
Leon S. Greos

Alveolar macrophages are infected by RSV in vivo and coexpress potent immunomodulatory molecules that potentially regulate local immune response or lung injury caused by RSV infection.


2005 ◽  
Vol 86 (4) ◽  
pp. 1103-1107 ◽  
Author(s):  
Blanca García-Barreno ◽  
John Steel ◽  
Monica Payá ◽  
Luis Martínez-Sobrido ◽  
Teresa Delgado ◽  
...  

The reactivity of a panel of 12 monoclonal antibodies raised against the human respiratory syncytial virus 22 kDa (22K) protein was tested by Western blotting with a set of 22K deletion mutants. The results obtained identified sequences in the C-terminal half of the 22K polypeptide required for integrity of most antibody epitopes, except for epitope 112, which was lost in mutants with short N-terminal deletions. This antibody, in contrast to the others, failed to immunoprecipitate the native 22K protein, indicating that the N terminus of this protein is buried in the native molecule and exposed only under the denaturing conditions of Western blotting. In addition, N-terminal deletions that abolished reactivity with monoclonal antibody 112 also inhibited phosphorylation of the 22K protein previously identified at Ser-58 and Ser-61, suggesting that the N terminus is important in regulating the 22K protein phosphorylation status, most likely as a result of its requirement for protein folding.


2018 ◽  
Vol 99 (4) ◽  
pp. 489-500 ◽  
Author(s):  
Daniela Machado ◽  
Andrés Pizzorno ◽  
Jonathan Hoffmann ◽  
Aurélien Traversier ◽  
Hubert Endtz ◽  
...  

2020 ◽  
Author(s):  
Christopher S. Anderson ◽  
Tatiana Chirkova ◽  
Christopher G. Slaunwhite ◽  
Xing Qiu ◽  
Edward E. Walsh ◽  
...  

AbstractRespiratory syncytial virus (RSV) contains a conserved CX3C motif on the ectodomain of the G-protein. The motif has been indicated as facilitating attachment of the virus to the host initiating infection via the human CX3CR1 receptor. The natural CX3CR1 ligand, CX3CL1, has been shown to induce signaling pathways resulting in transcriptional changes in the host cells. We hypothesize that binding of RSV to CX3CR1 via CX3C leads to transcriptional changes in host epithelial cells. Using transcriptomic analysis, the effect of CX3CR1 engagement by RSV was investigated. Normal human bronchial epithelial (NHBE) cells were infected with RSV virus containing either wildtype G-protein, or a mutant virus containing a CX4C mutation in the G-protein. RNA sequencing was performed on mock and 4-days-post-infected cultures. NHBE cultures were also treated with purified recombinant wild-type A2 G-protein. Here we report that RSV infection resulted in significant changes in the levels 766 transcripts. Many nuclear associated proteins were upregulated in the WT group, including Nucleolin. Alternatively, cilia-associated genes, including CC2D2A and CFAP221 (PCDP1), were downregulated. The addition of recombinant G-protein to the culture lead to the suppression of cilia-related genes while also inducing Nucleolin. Mutation of the CX3C motif (CX4C) reversed these effects on transcription decreasing nucleolin induction and lessening the suppression of cilia-related transcripts in culture. Furthermore, immunohistochemical staining demonstrated decreases in in ciliated cells and altered morphology. Therefore, it appears that engagement of CX3CR1 leads to induction of genes necessary for RSV entry as well as dysregulation of genes associated with cilia function.ImportanceRespiratory Syncytial Virus (RSV) has an enormous impact on infants and the elderly including increased fatality rates and potential for causing lifelong lung problems. Humans become infected with RSV through the inhalation of viral particles exhaled from an infected individual. These virus particles contain specific proteins that the virus uses to attach to human ciliated lung epithelial cells, initiating infection. Two viral proteins, G-protein and F-protein, have been shown to bind to human CX3CR1and Nucleolin, respectively. Here we show that the G-protein induces Nucleolin and suppresses gene transcripts specific to ciliated cells. Furthermore, we show that mutation of the CX3C-motif on the G-protein, CX4C, reverses these transcriptional changes.


Sign in / Sign up

Export Citation Format

Share Document