scholarly journals FsFKS1, the 1,3-β-Glucan Synthase from the Caspofungin-Resistant Fungus Fusarium solani

2006 ◽  
Vol 5 (7) ◽  
pp. 1036-1042 ◽  
Author(s):  
Young-sil Ha ◽  
Sarah F. Covert ◽  
Michelle Momany

ABSTRACT The cell wall, a mesh of carbohydrates and proteins, shapes and protects the fungal cell. The enzyme responsible for the synthesis of one of the main components of the fungal wall, 1,3-β-glucan synthase, is targeted by the antifungal caspofungin acetate (CFA). Clinical isolates of Candida albicans and Aspergillus fumigatus are much more sensitive to CFA than clinical isolates of Fusarium species. To better understand CFA resistance in Fusarium species, we cloned and sequenced FsFKS1, which encodes the Fusarium solani f. sp. pisi β(1,3)-d-glucan synthase, used RNA interference to reduce its expression and complemented deletion of the essential fks gene of the CFA-sensitive fungus A. fumigatus with FsFKS1. Reduction of the FsFKS1 message in F. solani f. sp. pisi reduced spore viability and caused lysis of spores and hyphae, consistent with cell wall defects. Compensating for the loss of A. fumigatus fks1 with FsFKS1 caused only a modest increase in the tolerance of A. fumigatus for CFA. Our results suggest that FsFKS1 is required for the proper construction of F. solani cell walls and that the resistance of F. solani to CFA is at best only partially due to resistance of the FsFKS1 enzyme to this antifungal agent.

2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Kátia Santana Cruz ◽  
Emerson Silva Lima ◽  
Marcia de Jesus Amazonas da Silva ◽  
Erica Simplício de Souza ◽  
Andreia Montoia ◽  
...  

Background. Cryptococcosis is a fungal disease of bad prognosis due to its pathogenicity and the toxicity of the drugs used for its treatment. The aim of this study was to investigate the medicinal potential of carbazole and β-carboline alkaloids and derivatives against Cryptococcus neoformans and C. gattii. Methods. MICs were established in accordance with the recommendations of the Clinical and Laboratory Standards Institute for alkaloids and derivatives against C. neoformans and C. gattii genotypes VNI and VGI, respectively. A single active compound was further evaluated against C. neoformans genotypes VNII, VNIII, and VNIV, C. gattii genotypes VGI, VGIII, and VGIV, Candida albicans ATCC 36232, for cytotoxicity against the MRC-5 lineage of human fibroblasts and for effects on fungal cells (cell wall, ergosterol, and leakage of nucleic acids). Results. Screening of 11 compounds revealed 8-nitroharmane as a significant inhibitor (MIC 40 μg/mL) of several C. neoformans and C. gattii genotypes. It was not toxic to fibroblasts (IC50 > 50 µg/mL) nor did it alter fungal cell walls or the concentration of ergosterol in C. albicans or C. neoformans. It increased leakage of substances that absorb at 260 nm. Conclusions. The synthetic β-carboline 8-nitroharmane significantly inhibits pathogenic Cryptococcus species and is interesting as a lead compound towards new therapy for Cryptococcus infections.


2020 ◽  
Vol 477 (24) ◽  
pp. 4729-4744
Author(s):  
L. Roxana Gutierrez-Armijos ◽  
Rodrigo A. C. Sussmann ◽  
Ariel M. Silber ◽  
Mauro Cortez ◽  
Agustín Hernández

Abnormal sterols disrupt cellular functions through yet unclear mechanisms. In Saccharomyces cerevisiae, accumulation of Δ8-sterols, the same type of sterols observed in patients of Conradi–Hünermann–Happle syndrome or in fungi after amine fungicide treatment, leads to cell wall weakness. We have studied the influence of Δ8-sterols on the activity of glucan synthase I, the protein synthetizing the main polymer in fungal cell walls, its regulation by the Cell Wall Integrity (CWI) pathway, and its transport from the endoplasmic reticulum to the plasma membrane. We ascertained that the catalytic characteristics were mostly unaffected by the presence of abnormal sterols but the enzyme was partially retained in the endoplasmic reticulum, leading to glucan deficit at the cell wall. Furthermore, we observed that glucan synthase I traveled through an unconventional exocytic route to the plasma membrane that is associated with low density intracellular membranes. Also, we found out that the CWI pathway remained inactive despite low glucan levels at the cell wall. Taken together, these data suggest that Δ8-sterols affect cell walls by inhibiting unconventional secretion of proteins leading to retention and degradation of glucan synthase I, while the compensatory CWI pathway is unable to activate. These results could be instrumental to understand defects of bone development in cholesterol biosynthesis disorders and fungicide mechanisms of action.


2003 ◽  
Vol 2 (1) ◽  
pp. 159-169 ◽  
Author(s):  
Victoria Martín ◽  
Blanca García ◽  
Elena Carnero ◽  
Angel Durán ◽  
Yolanda Sánchez

ABSTRACT β-Glucans are the main components of the fungal cell wall. Fission yeast possesses a family of β-glucan synthase-related genes. We describe here the cloning and characterization of bgs3 +, a new member of this family. bgs3 + was cloned as a suppressor of a mutant hypersensitive to Echinocandin and Calcofluor White, drugs that interfere with cell wall biosynthesis. Disruption of the gene is lethal, and a decrease in Bgs3p levels leads to rounded cells with thicker walls, slightly reduces the amount of the β-glucan, and raises the amount of α-glucan polymer. These cells finally died. bgs3 + is expressed in vegetative cells grown in different conditions and during mating and germination and is not enhanced by stress situations. Consistent with the observed expression pattern, Bgs3-green fluorescence protein (GFP-Bgs3p) was found at the growing tips during interphase and at the septum prior to cytokinesis, always localized to growth areas. We also found GFP-Bgs3p in mating projections, during the early stages of zygote formation, and at the growing pole during ascospore germination. We conclude that Bgs3p localization is restricted to growth areas and that Bgs3p is a glucan synthase homologue required for cell wall biosynthesis and cell elongation in the fission yeast life cycle.


Author(s):  
Anna Biernasiuk ◽  
Anna Berecka-Rycerz ◽  
Anna Gumieniczek ◽  
Maria Malm ◽  
Krzysztof Z. Łączkowski ◽  
...  

Abstract Recently, the occurrence of candidiasis has increased dramatically, especially in immunocompromised patients. Additionally, their treatment is often ineffective due to the resistance of yeasts to antimycotics. Therefore, there is a need to search for new antifungals. A series of nine newly synthesized thiazole derivatives containing the cyclopropane system, showing promising activity against Candida spp., has been further investigated. We decided to verify their antifungal activity towards clinical Candida albicans isolated from the oral cavity of patients with hematological malignancies and investigate the mode of action on fungal cell, the effect of combination with the selected antimycotics, toxicity to erythrocytes, and lipophilicity. These studies were performed by the broth microdilution method, test with sorbitol and ergosterol, checkerboard technique, erythrocyte lysis assay, and reversed phase thin-layer chromatography, respectively. All derivatives showed very strong activity (similar and even higher than nystatin) against all C. albicans isolates with minimal inhibitory concentration (MIC) = 0.008–7.81 µg/mL Their mechanism of action may be related to action within the fungal cell wall structure and/or within the cell membrane. The interactions between the derivatives and the selected antimycotics (nystatin, chlorhexidine, and thymol) showed additive effect only in the case of combination some of them and thymol. The erythrocyte lysis assay confirmed the low cytotoxicity of these compounds as compared to nystatin. The high lipophilicity of the derivatives was related with their high antifungal activity. The present studies confirm that the studied thiazole derivatives containing the cyclopropane system appear to be a very promising group of compounds in treatment of infections caused by C. albicans. However, this requires further studies in vivo. Key points • The newly thiazoles showed high antifungal activity and some of them — additive effect in combination with thymol. • Their mode of action may be related with the influence on the structure of the fungal cell wall and/or the cell membrane. • The low cytotoxicity against erythrocytes and high lipophilicity of these derivatives are their additional good properties. Graphical abstract


2021 ◽  
Vol 8 ◽  
Author(s):  
Thomas Voit ◽  
Fabian Cieplik ◽  
Johannes Regensburger ◽  
Karl-Anton Hiller ◽  
Anita Gollmer ◽  
...  

The antimicrobial photodynamic therapy (aPDT) is a promising approach for the control of microbial and especially fungal infections such as mucosal mycosis. TMPyP [5,10,15, 20-tetrakis(1-methylpyridinium-4-yl)-porphyrin tetra p-toluenesulfonate] is an effective photosensitizer (PS) that is commonly used in aPDT. The aim of this study was to examine the localization of TMPyP in Candida albicans before and after irradiation with visible light to get information about the cellular mechanism of antifungal action of the photodynamic process using this PS. Immediately after incubation of C. albicans with TMPyP, fluorescence microscopy revealed an accumulation of the PS in the cell envelope. After irradiation with blue light the complete cell showed red fluorescence, which indicates, that aPDT is leading to a damage in the cell wall with following influx of PS into the cytosol. Incubation of C. albicans with Wheat Germ Agglutinin (WGA) could confirm the cell wall as primary binding site of TMPyP. The finding that the porphyrin accumulates in the fungal cell wall and does not enter the interior of the cell before irradiation makes it unlikely that resistances can emerge upon aPDT. The results of this study may help in further development and modification of PS in order to increase efficacy against fungal infections such as those caused by C. albicans.


2010 ◽  
Vol 9 (9) ◽  
pp. 1329-1342 ◽  
Author(s):  
Claire A. Walker ◽  
Beatriz L. Gómez ◽  
Héctor M. Mora-Montes ◽  
Kevin S. Mackenzie ◽  
Carol A. Munro ◽  
...  

ABSTRACT The fungal pathogen Candida albicans produces dark-pigmented melanin after 3 to 4 days of incubation in medium containing l-3,4-dihydroxyphenylalanine (l-DOPA) as a substrate. Expression profiling of C. albicans revealed very few genes significantly up- or downregulated by growth in l-DOPA. We were unable to determine a possible role for melanin in the virulence of C. albicans. However, we showed that melanin was externalized from the fungal cells in the form of electron-dense melanosomes that were free or often loosely bound to the cell wall exterior. Melanin production was boosted by the addition of N-acetylglucosamine to the medium, indicating a possible association between melanin production and chitin synthesis. Melanin externalization was blocked in a mutant specifically disrupted in the chitin synthase-encoding gene CHS2. Melanosomes remained within the outermost cell wall layers in chs3Δ and chs2Δ chs3Δ mutants but were fully externalized in chs8Δ and chs2Δ chs8Δ mutants. All the CHS mutants synthesized dark pigment at equivalent rates from mixed membrane fractions in vitro, suggesting it was the form of chitin structure produced by the enzymes, not the enzymes themselves, that was involved in the melanin externalization process. Mutants with single and double disruptions of the chitinase genes CHT2 and CHT3 and the chitin pathway regulator ECM33 also showed impaired melanin externalization. We hypothesize that the chitin product of Chs3 forms a scaffold essential for normal externalization of melanosomes, while the Chs8 chitin product, probably produced in cell walls in greater quantity in the absence of CHS2, impedes externalization.


Biochemistry ◽  
2020 ◽  
Vol 59 (5) ◽  
pp. 682-693 ◽  
Author(s):  
Abhishek Chhetri ◽  
Anna Loksztejn ◽  
Hai Nguyen ◽  
Kaila M. Pianalto ◽  
Mi Jung Kim ◽  
...  

2020 ◽  
Vol 11 ◽  
Author(s):  
Xin Huang ◽  
Yu Liu ◽  
Tingjunhong Ni ◽  
Liping Li ◽  
Lan Yan ◽  
...  

2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Felipe Queiroga Sarmento Guerra ◽  
Rodrigo Santos Aquino de Araújo ◽  
Janiere Pereira de Sousa ◽  
Fillipe de Oliveira Pereira ◽  
Francisco J. B. Mendonça-Junior ◽  
...  

Aspergillusspp. produce a wide variety of diseases. For the treatment of such infections, the azoles and Amphotericin B are used in various formulations. The treatment of fungal diseases is often ineffective, because of increases in azole resistance and their several associated adverse effects. To overcome these problems, natural products and their derivatives are interesting alternatives. The aim of this study was to examine the effects of coumarin derivative, 7-hydroxy-6-nitro-2H-1-benzopyran-2-one (Cou-NO2), both alone and with antifungal drugs. Its mode of action againstAspergillusspp. Cou-NO2was tested to evaluate its effects on mycelia growth and germination of fungal conidia ofAspergillusspp. We also investigated possible Cou-NO2action on cell walls (0.8 M sorbitol) and on Cou-NO2to ergosterol binding in the cell membrane. The study shows that Cou-NO2is capable of inhibiting both the mycelia growth and germination of conidia for the species tested, and that its action affects the structure of the fungal cell wall. At subinhibitory concentration, Cou-NO2enhanced thein vitroeffects of azoles. Moreover, in combination with azoles (voriconazole and itraconazole) Cou-NO2displays an additive effect. Thus, our study supports the use of coumarin derivative 7-hydroxy-6-nitro-2H-1-benzopyran-2-one as an antifungal agent againstAspergillusspecies.


mBio ◽  
2020 ◽  
Vol 11 (6) ◽  
Author(s):  
Yuan Chen ◽  
Francois Le Mauff ◽  
Yan Wang ◽  
Ruiyang Lu ◽  
Donald C. Sheppard ◽  
...  

ABSTRACT Polysaccharides are key components of both the fungal cell wall and biofilm matrix. Despite having distinct assembly and regulation pathways, matrix exopolysaccharide and cell wall polysaccharides share common substrates and intermediates in their biosynthetic pathways. It is not clear, however, if the biosynthetic pathways governing the production of these polysaccharides are cooperatively regulated. Here, we demonstrate that cell wall stress promotes production of the exopolysaccharide galactosaminogalactan (GAG)-depend biofilm formation in the major fungal pathogen of humans Aspergillus fumigatus and that the transcription factor SomA plays a crucial role in mediating this process. A core set of SomA target genes were identified by transcriptome sequencing and chromatin immunoprecipitation coupled to sequencing (ChIP-Seq). We identified a novel SomA-binding site in the promoter regions of GAG biosynthetic genes agd3 and ega3, as well as its regulators medA and stuA. Strikingly, this SomA-binding site was also found in the upstream regions of genes encoding the cell wall stress sensors, chitin synthases, and β-1,3-glucan synthase. Thus, SomA plays a direct regulation of both GAG and cell wall polysaccharide biosynthesis. Consistent with these findings, SomA is required for the maintenance of normal cell wall architecture and compositions in addition to its function in biofilm development. Moreover, SomA was found to globally regulate glucose uptake and utilization, as well as amino sugar and nucleotide sugar metabolism, which provides precursors for polysaccharide synthesis. Collectively, our work provides insight into fungal adaptive mechanisms in response to cell wall stress where biofilm formation and cell wall homeostasis were synchronously regulated. IMPORTANCE The cell wall is essential for fungal viability and is absent from human hosts; thus, drugs disrupting cell wall biosynthesis have gained more attention. Caspofungin is a member of a new class of clinically approved echinocandin drugs to treat invasive aspergillosis by blocking β-1,3-glucan synthase, thus damaging the fungal cell wall. Here, we demonstrate that caspofungin and other cell wall stressors can induce galactosaminogalactan (GAG)-dependent biofilm formation in the human pathogen Aspergillus fumigatus. We further identified SomA as a master transcription factor playing a dual role in both biofilm formation and cell wall homeostasis. SomA plays this dual role by direct binding to a conserved motif upstream of GAG biosynthetic genes and genes involved in cell wall stress sensors, chitin synthases, and β-1,3-glucan synthase. Collectively, these findings reveal a transcriptional control pathway that integrates biofilm formation and cell wall homeostasis and suggest SomA as an attractive target for antifungal drug development.


Sign in / Sign up

Export Citation Format

Share Document