scholarly journals Melanin Externalization in Candida albicans Depends on Cell Wall Chitin Structures

2010 ◽  
Vol 9 (9) ◽  
pp. 1329-1342 ◽  
Author(s):  
Claire A. Walker ◽  
Beatriz L. Gómez ◽  
Héctor M. Mora-Montes ◽  
Kevin S. Mackenzie ◽  
Carol A. Munro ◽  
...  

ABSTRACT The fungal pathogen Candida albicans produces dark-pigmented melanin after 3 to 4 days of incubation in medium containing l-3,4-dihydroxyphenylalanine (l-DOPA) as a substrate. Expression profiling of C. albicans revealed very few genes significantly up- or downregulated by growth in l-DOPA. We were unable to determine a possible role for melanin in the virulence of C. albicans. However, we showed that melanin was externalized from the fungal cells in the form of electron-dense melanosomes that were free or often loosely bound to the cell wall exterior. Melanin production was boosted by the addition of N-acetylglucosamine to the medium, indicating a possible association between melanin production and chitin synthesis. Melanin externalization was blocked in a mutant specifically disrupted in the chitin synthase-encoding gene CHS2. Melanosomes remained within the outermost cell wall layers in chs3Δ and chs2Δ chs3Δ mutants but were fully externalized in chs8Δ and chs2Δ chs8Δ mutants. All the CHS mutants synthesized dark pigment at equivalent rates from mixed membrane fractions in vitro, suggesting it was the form of chitin structure produced by the enzymes, not the enzymes themselves, that was involved in the melanin externalization process. Mutants with single and double disruptions of the chitinase genes CHT2 and CHT3 and the chitin pathway regulator ECM33 also showed impaired melanin externalization. We hypothesize that the chitin product of Chs3 forms a scaffold essential for normal externalization of melanosomes, while the Chs8 chitin product, probably produced in cell walls in greater quantity in the absence of CHS2, impedes externalization.

2006 ◽  
Vol 51 (2) ◽  
pp. 510-520 ◽  
Author(s):  
Jeniel Nett ◽  
Leslie Lincoln ◽  
Karen Marchillo ◽  
Randall Massey ◽  
Kathleen Holoyda ◽  
...  

ABSTRACT Biofilms are microbial communities, embedded in a polymeric matrix, growing attached to a surface. Nearly all device-associated infections involve growth in the biofilm life style. Biofilm communities have characteristic architecture and distinct phenotypic properties. The most clinically important phenotype involves extraordinary resistance to antimicrobial therapy, making biofilm infections very difficulty to cure without device removal. The current studies examine drug resistance in Candida albicans biofilms. Similar to previous reports, we observed marked fluconazole and amphotericin B resistance in a C. albicans biofilm both in vitro and in vivo. We identified biofilm-associated cell wall architectural changes and increased β-1,3 glucan content in C. albicans cell walls from a biofilm compared to planktonic organisms. Elevated β-1,3 glucan levels were also found in the surrounding biofilm milieu and as part of the matrix both from in vitro and in vivo biofilm models. We thus investigated the possible contribution of β-glucans to antimicrobial resistance in Candida albicans biofilms. Initial studies examined the ability of cell wall and cell supernatant from biofilm and planktonic C. albicans to bind fluconazole. The cell walls from both environmental conditions bound fluconazole; however, four- to fivefold more compound was bound to the biofilm cell walls. Culture supernatant from the biofilm, but not planktonic cells, bound a measurable amount of this antifungal agent. We next investigated the effect of enzymatic modification of β-1,3 glucans on biofilm cell viability and the susceptibility of biofilm cells to fluconazole and amphotericin B. We observed a dose-dependent killing of in vitro biofilm cells in the presence of three different β-glucanase preparations. These same concentrations had no impact on planktonic cell viability. β-1,3 Glucanase markedly enhanced the activity of both fluconazole and amphotericin B. These observations were corroborated with an in vivo biofilm model. Exogenous biofilm matrix and commercial β-1,3 glucan reduced the activity of fluconazole against planktonic C. albicans in vitro. In sum, the current investigation identified glucan changes associated with C. albicans biofilm cells, demonstrated preferential binding of these biofilm cell components to antifungals, and showed a positive impact of the modification of biofilm β-1,3 glucans on drug susceptibility. These results provide indirect evidence suggesting a role for glucans in biofilm resistance and present a strong rationale for further molecular dissection of this resistance mechanism to identify new drug targets to treat biofilm infections.


2011 ◽  
Vol 56 (1) ◽  
pp. 208-217 ◽  
Author(s):  
Keunsook K. Lee ◽  
Donna M. MacCallum ◽  
Mette D. Jacobsen ◽  
Louise A. Walker ◽  
Frank C. Odds ◽  
...  

ABSTRACTCandida albicanscells with increased cell wall chitin have reduced echinocandin susceptibilityin vitro. The aim of this study was to investigate whetherC. albicanscells with elevated chitin levels have reduced echinocandin susceptibilityin vivo. BALB/c mice were infected withC. albicanscells with normal chitin levels and compared to mice infected with high-chitin cells. Caspofungin therapy was initiated at 24 h postinfection. Mice infected with chitin-normal cells were successfully treated with caspofungin, as indicated by reduced kidney fungal burdens, reduced weight loss, and decreasedC. albicansdensity in kidney lesions. In contrast, mice infected with high-chitinC. albicanscells were less susceptible to caspofungin, as they had higher kidney fungal burdens and greater weight loss during early infection. Cells recovered from mouse kidneys at 24 h postinfection with high-chitin cells had 1.6-fold higher chitin levels than cells from mice infected with chitin-normal cells and maintained a significantly reduced susceptibility to caspofungin when testedin vitro. At 48 h postinfection, caspofungin treatment induced a further increase in chitin content ofC. albicanscells harvested from kidneys compared to saline treatment. Some of the recovered clones had acquired, at a low frequency, a point mutation inFKS1resulting in a S645Y amino acid substitution, a mutation known to confer echinocandin resistance. This occurred even in cells that had not been exposed to caspofungin. Our results suggest that the efficacy of caspofungin againstC. albicanswas reducedin vivodue to either elevation of chitin levels in the cell wall or acquisition ofFKS1point mutations.


Microbiology ◽  
2004 ◽  
Vol 150 (4) ◽  
pp. 921-928 ◽  
Author(s):  
Serena Selvaggini ◽  
Carol A. Munro ◽  
Serge Paschoud ◽  
Dominique Sanglard ◽  
Neil A. R. Gow

Chitin is an essential structural polysaccharide in fungi that is required for cell shape and morphogenesis. One model for wall synthesis at the growing cell surface suggests that the compliance that is necessary for turgor-driven expansion of the cell wall involves a delicate balance of wall synthesis and lysis. Accordingly, de novo chitin synthesis may involve coordinated regulation of members of the CHS chitin synthase and CHT chitinase gene families. To test this hypothesis, the chitin synthase and chitinase activities of cell-free extracts were measured, as well as the chitin content of cell walls isolated from isogenic mutant strains that contained single or multiple knock-outs in members of these two gene families, in both Candida albicans and Saccharomyces cerevisiae. However, deletion of chitinase genes did not markedly affect specific chitin synthase activity, and deletion of single CHS genes had little effect on in vitro specific chitinase activity in either fungus. Chitin synthesis and chitinase production was, however, regulated in C. albicans during yeast–hypha morphogenesis. In C. albicans, the total specific activities of both chitin synthase and chitinase were higher in the hyphal form, which was attributable mainly to the activities of Chs2 and Cht3, respectively. It appeared, therefore, that chitin synthesis and hydrolysis were not coupled, but that both were regulated during yeast–hypha morphogenesis in C. albicans.


2015 ◽  
Vol 59 (10) ◽  
pp. 5932-5941 ◽  
Author(s):  
Louise A. Walker ◽  
Keunsook K. Lee ◽  
Carol A. Munro ◽  
Neil A. R. Gow

ABSTRACTTreatment ofAspergillus fumigatuswith echinocandins such as caspofungin inhibits the synthesis of cell wall β-1,3-glucan, which triggers a compensatory stimulation of chitin synthesis. Activation of chitin synthesis can occur in response to sub-MICs of caspofungin and to CaCl2and calcofluor white (CFW), agonists of the protein kinase C (PKC), and Ca2+-calcineurin signaling pathways.A. fumigatusmutants with thechsgene (encoding chitin synthase) deleted (ΔAfchs) were tested for their response to these agonists to determine the chitin synthase enzymes that were required for the compensatory upregulation of chitin synthesis. Only the ΔAfchsGmutant was hypersensitive to caspofungin, and all other ΔAfchsmutants tested remained capable of increasing their chitin content in response to treatment with CaCl2and CFW and caspofungin. The resulting increase in cell wall chitin content correlated with reduced susceptibility to caspofungin in the wild type and all ΔAfchsmutants tested, with the exception of the ΔAfchsGmutant, which remained sensitive to caspofungin.In vitroexposure to the chitin synthase inhibitor, nikkomycin Z, along with caspofungin demonstrated synergistic efficacy that was againAfChsG dependent. Dynamic imaging using microfluidic perfusion chambers demonstrated that treatment with sub-MIC caspofungin resulted initially in hyphal tip lysis. However, thickened hyphae emerged that formed aberrant microcolonies in the continued presence of caspofungin. In addition, intrahyphal hyphae were formed in response to echinocandin treatment. Thesein vitrodata demonstrate thatA. fumigatushas the potential to survive echinocandin treatmentin vivobyAfChsG-dependent upregulation of chitin synthesis. Chitin-rich cells may, therefore, persist in human tissues and act as the focus for breakthrough infections.


2011 ◽  
Vol 79 (5) ◽  
pp. 1961-1970 ◽  
Author(s):  
Héctor M. Mora-Montes ◽  
Mihai G. Netea ◽  
Gerben Ferwerda ◽  
Megan D. Lenardon ◽  
Gordon D. Brown ◽  
...  

ABSTRACTChitin is a skeletal cell wall polysaccharide of the inner cell wall of fungal pathogens. As yet, little about its role during fungus-host immune cell interactions is known. We show here that ultrapurified chitin fromCandida albicanscell walls did not stimulate cytokine production directly but blocked the recognition ofC. albicansby human peripheral blood mononuclear cells (PBMCs) and murine macrophages, leading to significant reductions in cytokine production. Chitin did not affect the induction of cytokines stimulated by bacterial cells or lipopolysaccharide (LPS), indicating that blocking was not due to steric masking of specific receptors. Toll-like receptor 2 (TLR2), TLR4, and Mincle (the macrophage-inducible C-type lectin) were not required for interactions with chitin. Dectin-1 was required for immune blocking but did not bind chitin directly. Cytokine stimulation was significantly reduced upon stimulation of PBMCs with heat-killed chitin-deficientC. albicanscells but not with live cells. Therefore, chitin is normally not exposed to cells of the innate immune system but is capable of influencing immune recognition by blocking dectin-1-mediated engagement with fungal cell walls.


2010 ◽  
Vol 9 (7) ◽  
pp. 991-1008 ◽  
Author(s):  
Anna Selmecki ◽  
Anja Forche ◽  
Judith Berman

ABSTRACTThe genomic plasticity ofCandida albicans, a commensal and common opportunistic fungal pathogen, continues to reveal unexpected surprises. Once thought to be asexual, we now know that the organism can generate genetic diversity through several mechanisms, including mating between cells of the opposite or of the same mating type and by a parasexual reduction in chromosome number that can be accompanied by recombination events (2, 12, 14, 53, 77, 115). In addition, dramatic genome changes can appear quite rapidly in mitotic cells propagatedin vitroas well asin vivo. The detection of aneuploidy in other fungal pathogens isolated directly from patients (145) and from environmental samples (71) suggests that variations in chromosome organization and copy number are a common mechanism used by pathogenic fungi to rapidly generate diversity in response to stressful growth conditions, including, but not limited to, antifungal drug exposure. Since cancer cells often become polyploid and/or aneuploid, some of the lessons learned from studies of genome plasticity inC. albicansmay provide important insights into how these processes occur in higher-eukaryotic cells exposed to stresses such as anticancer drugs.


mBio ◽  
2020 ◽  
Vol 11 (4) ◽  
Author(s):  
Delma S. Childers ◽  
Gabriela Mol Avelar ◽  
Judith M. Bain ◽  
Arnab Pradhan ◽  
Daniel E. Larcombe ◽  
...  

ABSTRACT The cell wall provides a major physical interface between fungal pathogens and their mammalian host. This extracellular armor is critical for fungal cell homeostasis and survival. Fungus-specific cell wall moieties, such as β-1,3-glucan, are recognized as pathogen-associated molecular patterns (PAMPs) that activate immune-mediated clearance mechanisms. We have reported that the opportunistic human fungal pathogen Candida albicans masks β-1,3-glucan following exposure to lactate, hypoxia, or iron depletion. However, the precise mechanism(s) by which C. albicans masks β-1,3-glucan has remained obscure. Here, we identify a secreted exoglucanase, Xog1, that is induced in response to lactate or hypoxia. Xog1 functions downstream of the lactate-induced β-glucan “masking” pathway to promote β-1,3-glucan “shaving.” Inactivation of XOG1 blocks most but not all β-1,3-glucan masking in response to lactate, suggesting that other activities contribute to this phenomenon. Nevertheless, XOG1 deletion attenuates the lactate-induced reductions in phagocytosis and cytokine stimulation normally observed for wild-type cells. We also demonstrate that the pharmacological inhibition of exoglucanases undermines β-glucan shaving, enhances the immune visibility of the fungus, and attenuates its virulence. Our study establishes a new mechanism underlying environmentally induced PAMP remodeling that can be manipulated pharmacologically to influence immune recognition and infection outcomes. IMPORTANCE The immune system plays a critical role in protecting us against potentially fatal fungal infections. However, some fungal pathogens have evolved evasion strategies that reduce the efficacy of our immune defenses. Previously, we reported that the fungal pathogen Candida albicans exploits specific host-derived signals (such as lactate and hypoxia) to trigger an immune evasion strategy that involves reducing the exposure of β-glucan at its cell surface. Here, we show that this phenomenon is mediated by the induction of a major secreted exoglucanase (Xog1) by the fungus in response to these host signals. Inactivating XOG1-mediated “shaving” of cell surface-exposed β-glucan enhances immune responses against the fungus. Furthermore, inhibiting exoglucanase activity pharmacologically attenuates C. albicans virulence. In addition to revealing the mechanism underlying a key immune evasion strategy in a major fungal pathogen of humans, our work highlights the potential therapeutic value of drugs that block fungal immune evasion.


mSphere ◽  
2019 ◽  
Vol 4 (5) ◽  
Author(s):  
Mohua Banerjee ◽  
Anna L. Lazzell ◽  
Jesus A. Romo ◽  
Jose L. Lopez-Ribot ◽  
David Kadosh

ABSTRACT Candidiasis affects a wide variety of immunocompromised and medically compromised patients. Candida albicans, a major human fungal pathogen, accounts for about 50% of all cases, while the remainder are caused by the less pathogenic non-albicans Candida species (NACS). These species are believed to be less pathogenic, in part, because they do not filament as readily or robustly as C. albicans, although definitive evidence is lacking. To address this question, we used strains for two NACS, Candida tropicalis and Candida parapsilosis, which were genetically engineered to constitutively express the key transcriptional regulator UME6 and drive strong filamentation both in vitro and during infection in vivo. Unexpectedly, both strains showed a dramatic reduction in organ fungal burden in response to UME6 expression. Consistent with these findings, we observed that a C. tropicalis hyperfilamentous mutant was significantly reduced and a filamentation-defective mutant was slightly increased for organ fungal burden. Comprehensive immune profiling generally did not reveal any significant changes in the host response to UME6 expression in the NACS that could explain the increased clearance of infection. Interestingly, whole-genome transcriptional profiling indicated that while genes important for filamentation were induced by UME6 expression in C. tropicalis and C. parapsilosis, other genes involved in a variety of processes important for pathogenesis were strongly downregulated. These findings suggest that there are fundamental evolutionary differences in the relationship between morphology and pathogenicity among Candida species and that NACS do not necessarily possess the same virulence properties as C. albicans. IMPORTANCE Many immunocompromised individuals, including HIV/AIDS and cancer patients, are susceptible to candidiasis. About half of all cases are caused by the major fungal pathogen Candida albicans, whereas the remainder are due to less pathogenic non-albicans Candida species (NACS). Generation of filamentous cells represents a major virulence property of C. albicans, and the NACS are believed to be less pathogenic, in part, because they do not filament as well as C. albicans does. To address this question, we determined the pathogenicity of two NACS strains that have been genetically engineered to promote filamentation during infection. Surprisingly, these strains showed a dramatic reduction in pathogenicity. The host immune response did not appear to be affected. However, unlike C. albicans, filamentation of the NACS was associated with downregulation of several genes important for pathogenicity processes. Our results suggest that there are fundamental evolutionary differences in the relationship between filamentation and pathogenesis in NACS compared to C. albicans.


mBio ◽  
2018 ◽  
Vol 9 (6) ◽  
Author(s):  
Arnab Pradhan ◽  
Gabriela M. Avelar ◽  
Judith M. Bain ◽  
Delma S. Childers ◽  
Daniel E. Larcombe ◽  
...  

ABSTRACTOrganisms must adapt to changes in oxygen tension if they are to exploit the energetic benefits of reducing oxygen while minimizing the potentially damaging effects of oxidation. Consequently, organisms in all eukaryotic kingdoms display robust adaptation to hypoxia (low oxygen levels). This is particularly important for fungal pathogens that colonize hypoxic niches in the host. We show that adaptation to hypoxia in the major fungal pathogen of humansCandida albicansincludes changes in cell wall structure and reduced exposure, at the cell surface, of β-glucan, a key pathogen-associated molecular pattern (PAMP). This leads to reduced phagocytosis by murine bone marrow-derived macrophages and decreased production of IL-10, RANTES, and TNF-α by peripheral blood mononuclear cells, suggesting that hypoxia-induced β-glucan masking has a significant effect uponC. albicans-host interactions. We show that hypoxia-induced β-glucan masking is dependent upon both mitochondrial and cAMP-protein kinase A (PKA) signaling. The decrease in β-glucan exposure is blocked by mutations that affect mitochondrial functionality (goa1Δ andupc2Δ) or that decrease production of hydrogen peroxide in the inner membrane space (sod1Δ). Furthermore, β-glucan masking is enhanced by mutations that elevate mitochondrial reactive oxygen species (aox1Δ). The β-glucan masking defects displayed bygoa1Δ andupc2Δ cells are suppressed by exogenous dibutyryl-cAMP. Also, mutations that inactivate cAMP synthesis (cyr1Δ) or PKA (tpk1Δtpk2Δ) block the masking phenotype. Our data suggest thatC. albicansresponds to hypoxic niches by inducing β-glucan masking via a mitochondrial cAMP-PKA signaling pathway, thereby modulating local immune responses and promoting fungal colonization.IMPORTANCEAnimal, plant, and fungal cells occupy environments that impose changes in oxygen tension. Consequently, many species have evolved mechanisms that permit robust adaptation to these changes. The fungal pathogenCandida albicanscan colonize hypoxic (low oxygen) niches in its human host, such as the lower gastrointestinal tract and inflamed tissues, but to colonize its host, the fungus must also evade local immune defenses. We reveal, for the first time, a defined link between hypoxic adaptation and immune evasion inC. albicans. As this pathogen adapts to hypoxia, it undergoes changes in cell wall structure that include masking of β-glucan at its cell surface, and it becomes better able to evade phagocytosis by innate immune cells. We also define the signaling mechanisms that mediate hypoxia-induced β-glucan masking, showing that they are dependent on mitochondrial signaling and the cAMP-protein kinase pathway. Therefore, hypoxia appears to trigger immune evasion in this fungal pathogen.


mBio ◽  
2014 ◽  
Vol 5 (6) ◽  
Author(s):  
Judith M. Bain ◽  
Johanna Louw ◽  
Leanne E. Lewis ◽  
Blessing Okai ◽  
Catriona A. Walls ◽  
...  

ABSTRACTCandida albicansis a major life-threatening human fungal pathogen in the immunocompromised host. Host defense against systemicCandidainfection relies heavily on the capacity of professional phagocytes of the innate immune system to ingest and destroy fungal cells. A number of pathogens, includingC. albicans, have evolved mechanisms that attenuate the efficiency of phagosome-mediated inactivation, promoting their survival and replication within the host. Here we visualize host-pathogen interactions using live-cell imaging and show that viable, but not heat- or UV-killedC. albicanscells profoundly delay phagosome maturation in macrophage cell lines and primary macrophages. The ability ofC. albicansto delay phagosome maturation is dependent on cell wall composition and fungal morphology. Loss of cell wallO-mannan is associated with enhanced acquisition of phagosome maturation markers, distinct changes in Rab GTPase acquisition by the maturing phagosome, impaired hyphal growth within macrophage phagosomes, profound changes in macrophage actin dynamics, and ultimately a reduced ability of fungal cells to escape from macrophage phagosomes. The loss of cell wallO-mannan leads to exposure of β-glucan in the inner cell wall, facilitating recognition by Dectin-1, which is associated with enhanced phagosome maturation.IMPORTANCEInnate cells engulf and destroy invading organisms by phagocytosis, which is essential for the elimination of fungal cells to protect against systemic life-threatening infections. Yet comparatively little is known about what controls the maturation of phagosomes following ingestion of fungal cells. We used live-cell microscopy and fluorescent protein reporter macrophages to understand howC. albicansviability, filamentous growth, and cell wall composition affect phagosome maturation and the survival of the pathogen within host macrophages. We have demonstrated that cell wall glycosylation and yeast-hypha morphogenesis are required for disruption of host processes that function to inactivate pathogens, leading to survival and escape of this fungal pathogen from within host phagocytes. The methods employed here are applicable to study interactions of other pathogens with phagocytic cells to dissect how specific microbial features impact different stages of phagosome maturation and the survival of the pathogen or host.


Sign in / Sign up

Export Citation Format

Share Document