scholarly journals Evolution of the Cytosolic Iron-Sulfur Cluster Assembly Machinery in Blastocystis Species and Other Microbial Eukaryotes

2013 ◽  
Vol 13 (1) ◽  
pp. 143-153 ◽  
Author(s):  
Anastasios D. Tsaousis ◽  
Eleni Gentekaki ◽  
Laura Eme ◽  
Daniel Gaston ◽  
Andrew J. Roger

ABSTRACT The cytosolic iron/sulfur cluster assembly (CIA) machinery is responsible for the assembly of cytosolic and nuclear iron/sulfur clusters, cofactors that are vital for all living cells. This machinery is uniquely found in eukaryotes and consists of at least eight proteins in opisthokont lineages, such as animals and fungi. We sought to identify and characterize homologues of the CIA system proteins in the anaerobic stramenopile parasite Blastocystis sp. strain NandII. We identified transcripts encoding six of the components—Cia1, Cia2, MMS19, Nbp35, Nar1, and a putative Tah18—and showed using immunofluorescence microscopy, immunoelectron microscopy, and subcellular fractionation that the last three of them localized to the cytoplasm of the cell. We then used comparative genomic and phylogenetic approaches to investigate the evolutionary history of these proteins. While most Blastocystis homologues branch with their eukaryotic counterparts, the putative Blastocystis Tah18 seems to have a separate evolutionary origin and therefore possibly a different function. Furthermore, our phylogenomic analyses revealed that all eight CIA components described in opisthokonts originated before the diversification of extant eukaryotic lineages and were likely already present in the last eukaryotic common ancestor (LECA). The Nbp35, Nar1 Cia1, and Cia2 proteins have been conserved during the subsequent evolutionary diversification of eukaryotes and are present in virtually all extant lineages, whereas the other CIA proteins have patchy phylogenetic distributions. Cia2 appears to be homologous to SufT, a component of the prokaryotic sulfur utilization factors (SUF) system, making this the first reported evolutionary link between the CIA and any other Fe/S biogenesis pathway. All of our results suggest that the CIA machinery is an ubiquitous biosynthetic pathway in eukaryotes, but its apparent plasticity in composition raises questions regarding how it functions in nonmodel organisms and how it interfaces with various iron/sulfur cluster systems (i.e., the iron/sulfur cluster, nitrogen fixation, and/or SUF system) found in eukaryotic cells.

2019 ◽  
Vol 85 (9) ◽  
Author(s):  
Jianghui Li ◽  
Xiaojun Ren ◽  
Bingqian Fan ◽  
Zhaoyang Huang ◽  
Wu Wang ◽  
...  

ABSTRACTWhile zinc is an essential trace metal in biology, excess zinc is toxic to organisms. Previous studies have shown that zinc toxicity is associated with disruption of the [4Fe-4S] clusters in various dehydratases inEscherichia coli. Here, we report that the intracellular zinc overload inE. colicells inhibits iron-sulfur cluster biogenesis without affecting the preassembled iron-sulfur clusters in proteins. Among the housekeeping iron-sulfur cluster assembly proteins encoded by the gene clusteriscSUA-hscBA-fdx-iscXinE. colicells, the scaffold IscU, the iron chaperone IscA, and ferredoxin have strong zinc binding activity in cells, suggesting that intracellular zinc overload inhibits iron-sulfur cluster biogenesis by binding to the iron-sulfur cluster assembly proteins. Mutations of the conserved cysteine residues to serine in IscA, IscU, or ferredoxin completely abolish the zinc binding activity of the proteins, indicating that zinc can compete with iron or iron-sulfur cluster binding in IscA, IscU, and ferredoxin and block iron-sulfur cluster biogenesis. Furthermore, intracellular zinc overload appears to emulate the slow-growth phenotype of theE. colimutant cells with deletion of the iron-sulfur cluster assembly proteins IscU, IscA, and ferredoxin. Our results suggest that intracellular zinc overload inhibits iron-sulfur cluster biogenesis by targeting the iron-sulfur cluster assembly proteins IscU, IscA, and ferredoxin inE. colicells.IMPORTANCEZinc toxicity has been implicated in causing various human diseases. High concentrations of zinc can also inhibit bacterial cell growth. However, the underlying mechanism has not been fully understood. Here, we report that zinc overload inEscherichia colicells inhibits iron-sulfur cluster biogenesis by targeting specific iron-sulfur cluster assembly proteins. Because iron-sulfur proteins are involved in diverse physiological processes, the zinc-mediated inhibition of iron-sulfur cluster biogenesis could be largely responsible for the zinc-mediated cytotoxicity. Our finding provides new insights on how intracellular zinc overload may inhibit cellular functions in bacteria.


2021 ◽  
Vol 87 (10) ◽  
Author(s):  
Xiaojun Ren ◽  
Feng Liang ◽  
Zhengfen He ◽  
Bingqian Fan ◽  
Zhirong Zhang ◽  
...  

ABSTRACT Escherichia coli [2Fe-2S]-ferredoxin and other ISC proteins encoded by the iscRSUA-hscBA-fdx-iscX (isc) operon are responsible for the assembly of iron-sulfur clusters. It is proposed that ferredoxin (Fdx) donates electrons from its reduced [2Fe-2S] center to iron-sulfur cluster biogenesis reactions. However, the underlying mechanisms of the [2Fe-2S] cluster assembly in Fdx remain elusive. Here, we report that Fdx preferentially binds iron, but not the [2Fe-2S] cluster, under cold stress conditions (≤16°C). The iron binding in Fdx is characterized by a unique absorption peak at 320 nm based on UV-visible spectroscopy. In addition, the iron-binding form of Fdx could be converted to the [2Fe-2S] cluster-bound form after transferring cold-stressed cells to normal cultivation temperatures above 25°C. In vitro experiments also revealed that Fdx could utilize bound iron to assemble the [2Fe-2S] cluster by itself. Furthermore, inactivation of the genes encoding IscS, IscU, and IscA did not limit [2Fe-2S] cluster assembly in Fdx, which was also observed by inactivating the isc or suf operon, indicating that iron-sulfur cluster biogenesis in Fdx arose from a unique pathway in E. coli. Our results suggest that the intracellular assembly of [2Fe-2S] clusters in Fdx is susceptible to environmental temperatures. The iron binding form of Fdx (Fe-Fdx) is a precursor during its maturation to a cluster binding form ([2Fe-2S]-Fdx), and reassembly of the [2Fe-2S] clusters during temperature increases is not strictly reliant on other specific iron donors and scaffold proteins within the Isc or Suf system. IMPORTANCE Fdx is an electron carrier that is required for the maturation of many other iron-sulfur proteins. Its function strictly depends on its [2Fe-2S] center that bonds with the cysteinyl S atoms of four cysteine residues within Fdx. However, the assembly mechanism of the [2Fe-2S] clusters in Fdx remains controversial. This study reports that Fdx fails to form its [2Fe-2S] cluster under cold stress conditions but instead binds a single Fe atom at the cluster binding site. Moreover, when temperatures increase, Fdx can assemble clusters by itself from its iron-only binding form in E. coli cells. The possibility remains that Fdx can effectively accept clusters from multiple sources. Nevertheless, our results suggest that Fdx has a strong iron binding activity that contributes to the assembly of its own [2Fe-2S] cluster and that Fdx acts as a temperature sensor to regulate Isc system-mediated iron-sulfur cluster biogenesis.


2019 ◽  
Vol 7 (12) ◽  
pp. 671 ◽  
Author(s):  
Xin Nie ◽  
Bernhard Remes ◽  
Gabriele Klug

A multitude of biological functions relies on iron-sulfur clusters. The formation of photosynthetic complexes goes along with an additional demand for iron-sulfur clusters for bacteriochlorophyll synthesis and photosynthetic electron transport. However, photooxidative stress leads to the destruction of iron-sulfur clusters, and the released iron promotes the formation of further reactive oxygen species. A balanced regulation of iron-sulfur cluster synthesis is required to guarantee the supply of this cofactor, on the one hand, but also to limit stress, on the other hand. The phototrophic alpha-proteobacterium Rhodobacter sphaeroides harbors a large operon for iron-sulfur cluster assembly comprising the iscRS and suf genes. IscR (iron-sulfur cluster regulator) is an iron-dependent regulator of isc-suf genes and other genes with a role in iron metabolism. We applied reporter gene fusions to identify promoters of the isc-suf operon and studied their activity alone or in combination under different conditions. Gel-retardation assays showed the binding of regulatory proteins to individual promoters. Our results demonstrated that several promoters in a sense and antisense direction influenced isc-suf expression and the binding of the IscR, Irr, and OxyR regulatory proteins to individual promoters. These findings demonstrated a complex regulatory network of several promoters and regulatory proteins that helped to adjust iron-sulfur cluster assembly to changing conditions in Rhodobacter sphaeroides.


2004 ◽  
Vol 279 (52) ◽  
pp. 53924-53931 ◽  
Author(s):  
Jonathan J. Silberg ◽  
Tim L. Tapley ◽  
Kevin G. Hoff ◽  
Larry E. Vickery

mBio ◽  
2019 ◽  
Vol 10 (4) ◽  
Author(s):  
Aurore Fleurie ◽  
Abdelrahim Zoued ◽  
Laura Alvarez ◽  
Kelly M. Hines ◽  
Felipe Cava ◽  
...  

ABSTRACTBolA family proteins are conserved in Gram-negative bacteria and many eukaryotes. While diverse cellular phenotypes have been linked to this protein family, the molecular pathways through which these proteins mediate their effects are not well described. Here, we investigated the roles of BolA family proteins inVibrio cholerae, the cholera pathogen. LikeEscherichia coli,V. choleraeencodes two BolA proteins, BolA and IbaG. However, in marked contrast toE. coli, wherebolAis linked to cell shape andibaGis not, inV. cholerae,bolAmutants lack morphological defects, whereasibaGproved critical for the generation and/or maintenance of the pathogen’s morphology. Notably, the bizarre-shaped, multipolar, elongated, and wide cells that predominated in exponential-phase ΔibaGV. choleraecultures were not observed in stationary-phase cultures. TheV. choleraeΔibaGmutant exhibited increased sensitivity to cell envelope stressors, including cell wall-acting antibiotics and bile, and was defective in intestinal colonization. ΔibaGV. choleraehad reduced peptidoglycan and lipid II and altered outer membrane lipids, likely contributing to the mutant’s morphological defects and sensitivity to envelope stressors. Transposon insertion sequencing analysis ofibaG’s genetic interactions suggested thatibaGis involved in several processes involved in the generation and homeostasis of the cell envelope. Furthermore, copurification studies revealed that IbaG interacts with proteins containing iron-sulfur clusters or involved in their assembly. Collectively, our findings suggest thatV. choleraeIbaG controls cell morphology and cell envelope integrity through its role in biogenesis or trafficking of iron-sulfur cluster proteins.IMPORTANCEBolA-like proteins are conserved across prokaryotes and eukaryotes. These proteins have been linked to a variety of phenotypes, but the pathways and mechanisms through which they act have not been extensively characterized. Here, we unraveled the role of the BolA-like protein IbaG in the cholera pathogenVibrio cholerae. The absence of IbaG was associated with dramatic changes in cell morphology, sensitivity to envelope stressors, and intestinal colonization defects. IbaG was found to be required for biogenesis of several components of theV. choleraecell envelope and to interact with numerous iron-sulfur cluster-containing proteins and factors involved in their assembly. Thus, our findings suggest that IbaG governsV. choleraecell shape and cell envelope homeostasis through its effects on iron-sulfur proteins and associated pathways. The diversity of processes involving iron-sulfur-containing proteins is likely a factor underlying the range of phenotypes associated with BolA family proteins.


Sign in / Sign up

Export Citation Format

Share Document